• История открытия водорода

    Если является самым распространенным химическим элементом на Земле, то водород – самый распространенный элемент во всей Вселенной. Наше (и другие звезды) примерно на половину состоит из водорода, а что касается межзвездного газа, то он на 90% состоит из атомов водорода. Немалое место этот химический элемент занимает и на Земле, ведь вместе с кислородом он входит в состав воды, а само его название «водород» происходит от двух древнегреческих слов: «вода» и «рожаю». Помимо воды водород присутствует в большинстве органических веществ и клеток, без него, как и без кислорода, была бы немыслима сама Жизнь.

    История открытия водорода

    Первым среди ученых водород заметил еще великий алхимик и лекарь средневековья Теофраст Парацельс. В своих алхимических опытах, в надежде отыскать «философский камень» смешивая с кислотами Парацельс получил некий неизвестный до того горючий газ. Правда отделить этот газ от воздуха так и не удалось.

    Только спустя полтора века после Парацельса французскому химику Лемери таки удалось отделить водород от воздуха и доказать его горючесть. Правда Лемери так и не понял, что полученный им газ является чистым водородом. Параллельно подобными химическими опытами занимался и русский ученый Ломоносов, но настоящий прорыв в исследовании водорода был сделан английским химиком Генри Кавендишом, которого по праву считают первооткрывателем водорода.

    В 1766 году Кавендишу удалось получить чистый водород, который он называл «горючим воздухом». Еще через 20 лет талантливый французский химик Антуан Лавуазье смог синтезировать воду и выделить из нее этот самый «горючий воздух» – водород. И к слову именно Лавуазье предложил водороду его название – «Hydrogenium», он же «водород».

    Антуан Лавуазье со своей женой, помогавшей ему проводить химические опыты, в том числе и по синтезу водорода.

    В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. То есть иными словами водород и его атомный вес является краеугольным камнем таблицы Менделеева, той точкой опоры, на основе которой великий химик создал свою систему. Поэтому не удивительно, что в таблице Менделеева водород занимает почетное первое место.

    Помимо этого водород имеет такие характеристики:

    • Атомная масса водорода составляет 1,00795.
    • У водорода в наличии три изотопа, каждый из которых обладает индивидуальными свойствами.
    • Водород – легкий элемент имеющий малую плотность.
    • Водород обладает восстановительными и окислительными свойствами.
    • Вступая в с металлами, водород принимает их электрон и стает окислителем. Подобные соединения называются гидратами.

    Водород это газ, молекула его состоит из двух атомов.

    Так схематически выглядит молекула водорода.

    Молекулярный водород, образованный из таких вот двухатомных молекул взрывается при поднесенной горящей спичке. Молекула водорода при взрыве распадается на атомы, которые превращаются в ядра гелия. Именно таким образом происходят на Солнце и других звездах – за счет постоянного распадение молекул водорода наше светило горит и обогревает нас своим теплом.

    Физические свойства водорода

    У водорода в наличие следующие физические свойства:

    • Температура кипения водорода составляет 252,76 °C;
    • А при температуре 259,14 °C он уже начинает плавиться.
    • В воде водород растворяется слабо.
    • Чистый водород – весьма опасное взрывчатое и горючее вещество.
    • Водород легче воздуха в 14,5 раз.

    Химические свойства водорода

    Поскольку водород может быть в разных ситуациях и окислителем и восстановителем его используют для осуществления реакций и синтезов.

    Окислительные свойства водорода взаимодействуют с активными (обычно щелочными и щелочноземельными) металлами, результатом этих взаимодействий является образование гидридов – солеподобных соединений. Впрочем, гидриды образуются и при реакциях водорода с малоактивными металлами.

    Восстановительные свойства водорода обладают способностью восстанавливать металлы до простых веществ из их оксидов, в промышленности это называется водородотермией.

    Как получить водород?

    Среди промышленных средств получения водорода можно выделить:

    • газификацию угля,
    • паровую конверсию метана,
    • электролиз.

    В лаборатории водород можно получить:

    • при гидролизе гидридов металлов,
    • при реакции с водой щелочных и щелочноземельных металлов,
    • при взаимодействии разбавленных кислот с активными металлами.

    Применение водорода

    Так как водород в 14 раз легче воздуха, то в былые времена им начиняли воздушные шары и дирижабли. Но после серии катастроф произошедших с дирижаблями конструкторам пришлось искать водороду замену (напомним, чистый водород – взрывоопасное вещество, и малейшей искры было достаточно, чтобы случился взрыв).

    Взрыв дирижабля Гинденбург в 1937 году, причиной взрыва как раз и стало воспламенение водорода (вследствие короткого замыкания), на котором летал этот огромный дирижабль.

    Поэтому для подобных летательных аппаратов вместо водорода стали использовать гелий, который также легче воздуха, получение гелия более трудоемкое, зато он не такой взрывоопасный как водород.

    Также с помощью водорода производится очистка различных видов топлива, в особенности на основе нефти и нефтепродуктов.

    Водород, видео

    И в завершение образовательное видео по теме нашей статьи.


  • Характеристика s-элементов

    К блоку s-элементов относятся 13 элементов, общим для которых является застраивание в их атомах s-подуровня внешнего энергетического уровня.

    Хотя водород и гелий относятся к s-элементам из-за специфики их свойств их следует рассматривать отдельно. Водород, натрий, калий, магний, кальций - жизненно необходимые элементы.

    Соединения s-элементов проявляют общие закономерности в свойствах, что объясняется сходством электронного строения их атомов. Все внешние электроны являются валентными и принимают участие в образовании химических связей. Поэтому максимальная степень окисления этих элементов в соединениях равна числу электронов во внешнем слое и соответственно равна номеру группы, в которой и находится данный элемент. Степень окисления металлов s-элементов всегда положительна. Другая особенность заключается в том, что после отделения электронов внешнего слоя остается ион, имеющий оболочку благородного газа. При увеличении порядкового номера элемента, атомного радиуса, уменьшается энергии ионизации (от 5,39 эВ y Li до 3,83 эВ y Fr), а восстановительная активность элементов возрастает.

    Подавляющее большинство соединений s-элементов бесцветно (в отличие от соединений d-элементов), так как исключен обуславливающий окраску переход d-электронов с низких энергетических уровней на более высокие энергетические уровни.

    Соединения элементов групп IA - IIA - типичные соли, в водном растворе они практически полностью диссоциируют на ионы, не подверженны гидролизу по катиону (кроме солей Be 2+ и Mg 2+).

    водород гидрид ионный ковалентный

    Для ионов s-элементов комплексообразование не характерно. Кристаллические комплексы s - элементов с лигандами H 2 O-кристаллогидраты, известны с глубокой древности, например: Na 2 В 4 O 7 10H 2 O-бура, KАl (SO 4) 2 12H 2 O-квасцы. Молекулы воды в кристаллогидратах группируются вокруг катиона, но иногда полностью окружают и анион. Вследствие малого заряда иона и большого радиуса иона щелочные металлы наименее склонны к образованию комплексов, в том числе и аквакомплексов. В качестве комплексообразователей в комплексных соединениях невысокой устойчивости выступают ионы лития, бериллия, магния.

    Водород. Химические свойства водорода

    Водород - наиболее легкий s-элемент. Его электронная конфигурация в основном состоянии 1S 1 . Атом водорода состоит из одного протона и одного электрона. Особенность водорода состоит в том, что его валентный электрон находится непосредственно в сфере действия атомного ядра. У водорода нет промежуточного электронного слоя, поэтому водород нельзя считать электронным аналогом щелочных металлов.

    Как и щелочные металлы водород является восстановителем, проявляет степень окисления +1, Спектры водорода сходны со спектрами щелочных металлов. Со щелочными металлами сближает водород его способность давать в растворах гидратированный положительно заряженный ион Н + .

    Подобно галогеном атому водорода не достает одного электрона. Этим и обусловлено существование гидрид-иона Н - .

    Кроме того, как и атомы галогенов атомы водорода характеризуются высоким значением энергии ионизации (1312 кдж/моль). Таким образом, водород занимает особое положение в Периодической системе элементов.

    Водород - самый распространенный элемент во вселенной: он составляет до половины массы солнца и большинства звезд.

    На солнце и других планетах водород находится в атомарном состоянии, в межзвездной среде в виде частично ионизированных двухатомных молекул.

    Водород имеет три изотопа; протий 1 Н, дейтерий 2 Д и тритий 3 Т, причем тритий - радиоактивный изотоп.

    Молекулы водорода отличаются большой прочностью и малой поляризуемостью, незначительными размерами и малой массой и обладают большой подвижностью. Поэтому у водорода очень низкие температуры плавления (-259,2 о С) и кипения (-252,8 о С). Из-за высокой энергии диссоциации (436 кдж/моль) распад молекул на атомы происходит при температурах выше 2000 о С. Водород бесцветный газ без запаха и вкуса. Он имеет малую плотность - 8,99·10 -5 г/см При очень высоких давлениях водород переходит в металлическое состояние. Считается, что на дальних планетах солнечной системы - Юпитере и Сатурне водород находится в металлическом состоянии. Существует предположение, что в состав земного ядра также входит металлический водород, где он находится при сверхвысоком давлении, создаваемым земной мантией.

    Химические свойства. При комнатной температуре молекулярный водород реагирует лишь со фтором, при облучении светом - с хлором и бромом, при нагревании с О 2 ,S, Se, N 2 , C, I 2 .

    Реакции водорода с кислородом и галогенами протекают по радикальному механизму.

    Взаимодействие с хлором - пример неразветвленной реакции при облучении светом (фотохимическая активация), при нагревании (термическая активация).

    Сl+ H 2 = HCl + H (развитие цепи)

    H+ Сl 2 = HCl + Сl

    Взрыв гремучего газа - водородокислородной смеси - пример разветвленного цепного процесса, когда инициированние цепи включает не одну, а несколько стадий:

    Н 2 + О 2 = 2ОН

    Н+ О 2 = ОН+О

    О+ Н 2 = ОН+ Н

    ОН+ Н 2 = Н 2 О + Н

    Взрывного процесса удается избежать, если работать с чистым водородом.

    Поскольку для водорода характерна - положительная (+1) и отрицательная (-1) степень окисления, водород может проявлять и восстановительные, и окислительные свойства.

    Восстановительные свойства водорода проявляются при взаимодействии с неметаллами:

    Н 2 (г) + Cl 2 (г) = 2НCl (г),

    2Н 2 (г) + О 2 (г) = 2Н 2 О (г),

    Эти реакции протекают с выделением большого количества теплоты, что свидетельствуют о высокой энергии (прочности) связей Н-Сl, Н-О. Поэтому водород проявляет восстановительные свойства по отношению ко многим оксидам, галогенидам, например:

    На этом основано применение водорода в качестве восстановителя для получения простых веществ из оксидов галогенидов.

    Еще более сильным восстановителем является атомарный водород. Он образуется из молекулярного в электронном разряде в условиях низкого давления.

    Высокой восстановительной активностью обладает водород в момент выделения при взаимодействии металла с кислотой. Такой водород восстанавливает CrCl 3 в CrCl 2:

    2CrCl 3 + 2HСl + 2Zn = 2CrCl 2 + 2ZnCl 2 +H 2 ^

    Важное значение имеет взаимодействие водорода с оксидом азота (II):

    2NO + 2H 2 = N 2 + H 2 O

    Используемое в очистительных системах при производстве азотной кислоты.

    В качестве окислителя водород взаимодействует с активными металлами:

    В данном случае водород ведет себя как галоген, образуя аналогичные галогенидам гидриды .

    Гидриды s-элементов I группы имеют ионную структуру типа NaCl. В химическом отношении ионные гидриды ведут себя как основные соединения.

    К ковалентным относятся гидриды менее электроотрицательных, чем сам водород неметаллических элементов, например, гидриды состава SiH 4 , ВН 3 , СН 4 . По химической природе гидриды неметаллов являются кислотными соединениями.

    Характерной особенностью гидролиза гидридов является выделение водорода, реакция протекает по окислительно-восстановительному механизму.

    Основной гидрид

    Кислотный гидрид

    За счет выделения водорода гидролиз протекает полностью и необратимо (?Н<0, ?S>0). При этом основные гидриды образуют щелочь, а кислотные кислоту.

    Стандартный потенциал системы В. Следовательно, ион Н - сильный восстановитель.

    В лаборатории водород получают взаимодействием цинка с 20% -й серной кислотой в аппарате Киппа.

    Технический цинк часто содержит небольшие примеси мышьяка и сурьмы, которые восстанавливаются водородом в момент выделения до ядовитых газов: арсина SbH 3 и стабина SbH Таким водородом можно отравиться. С химически чистым цинком реакция протекает медленно из-за перенапряжения и хорошего тока водорода получить не удается. Скорость этой реакции увеличивается путем добавления кристалликов медного купороса, реакция ускоряется за счет образования гальванической пары Cu-Zn.

    Более чистый водород образуется при действии щелочи на кремний или алюминий при нагревании:

    В промышленности чистый водород получают электролизом воды, содержащей электролиты (Na 2 SO 4 , Ba (OH) 2).

    Большое количество водорода образуется в качестве побочного продукта при электролизе водного раствора хлорида натрия с диафрагмой, разделяющей катодное и анодное пространство,

    Наибольшее количество водорода получают газификацией твердого топлива (антрацита) перегретым водяным паром:

    Либо конверсией природного газа (метана) перегретым водяным паром:

    Образующаяся смесь (синтез-газ) используется в производстве многих органических соединений. Выход водорода можно увеличить, пропуская синтез-газ над катализатором, при этом СО превращается вСО 2 .

    Применение. Большое количество водорода расходуется на синтез аммиака. На получение хлороводорода и соляной кислоты, для гидрогенизации растительных жиров, для восстановления металлов (Mо, W, Fe) из оксидов. Водород-кислородное пламя используют для сварки, резки и плавления металлов.

    Жидкий водород используют в качестве ракетного топлива. Водородное топливо является экологически безопасным и более энергоемким, чем бензин, поэтому в будущем оно может заменить нефтепродукты. Уже сейчас в мире на водороде работает несколько сот автомобилей. Проблемы водородной энергетики связаны с хранением и транспортировкой водорода. Водород храня в подземных танкерах в жидком состоянии под давлением 100 атм. Перевозка больших количеств жидкого водорода представляет серьезную опасность.

    МИНСКИЙ КОЛЛЕДЖ ТЕХНОЛОГИИ И ДИЗАЙНА ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

    Реферат

    по дисциплине: Химия

    Тема: «Водород и его соединения»

    Подготовила: учащаяся Iкурса343 группы

    Вискуп Елена

    Проверил: Алябьева Н.В.

    Минск 2009

    Строение атома водорода в периодической системе

    Степени окисления

    Распространенность в природе

    Водород как простое вещество

    Соединения водорода

    Список литературы


    Строение атома водорода в периодической системе

    Первый элемент периодической системы (1-й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к какой группе, поэтому в таблицах условно помещается в IА группу и/или VIIA-группу.

    Атом водорода наименьший по размерам и самый легкий среди атомов всех элементов. Электронная формула атома 1s 1 . Обычная форма существования элемента в свободном состоянии - двухатомная молекула.

    Степени окисления

    Атом водорода в соединениях с более электроотрицательными элементами проявляет степень окисления +1, например HF, H 2 O и др. А в соединениях с металлами-гидридах - степень окисления атома водорода равна -1, например NaH, CaH 2 и др. Обладает значением электроотрицательности средним между типичными металлами и неметаллами. Способен каталитически восстанавливать в органических растворителях, таких как уксусная кислота или спирт, многие органические соединения: ненасыщенные соединения до насыщенных, некоторые соединения натрия-до аммиака или аминов.

    Распространенность в природе

    Природный водород состоит из двух стабильных изотопов - протия 1 Н, дейтерия 2 Н и трития 3 Н. По-другому дейтерий обозначают как D, а тритий как Т. Возможны различные комбинации, например НТ, HD, TD, H 2 , D 2 , T 2 . Водород больше распространен в природе в виде различных соединений с серой (H 2 S), кислородом (в виде воды), углеродом, азотом и хлором. Реже в виде соединений с фосфором, йодом, бромом и другими элементами. Входит в состав всех растительных и животных организмов, нефти, ископаемых углей, природного газа, ряда минералов и пород. В свободном состоянии встречается очень редко в небольших количествах – в вулканических газах и продуктах разложения органических остатков. Водород является самым распространенным элементом во Вселенной (около 75%). Он входит в состав Солнца и большинства звезд, а также планет Юпитера и Сатурна, которые в основном состоят из водорода. На отдельных планетах водород может существовать в твердом виде.

    Водород как простое вещество

    Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Физические свойства - газ без цвета и запаха. Быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Обладает высокой теплопроводностью.

    Химические свойства . В обычном состоянии при низких температурах малоактивен, без нагревания реагирует с фтором и хлором (при наличии света).

    H 2 + F 2 2HF H 2 +Cl 2 hv 2HCl

    С неметаллами взаимодействует активнее, чем с металлами.

    При взаимодействии с различными веществами может проявлять как окислительные, так и восстановительные свойства.


    Соединения водорода

    Одним из соединений водорода являются галогены. Они образуются при соединении водорода с элементами VIIA группы. HF, HCl, HBr и HIпредставляют собой бесцветные газы, хорошо растворимые в воде.

    Cl 2 + H 2 OHClO + HCl; HClO-хлорная вода

    Так как HBr и HI типичные восстановители, то их нельзя получить по обменной реакции как HCl.

    CaF 2 + H 2 SO 4 = CaSO 4 + 2HF

    Вода - самое распространенное в природе соединение водорода.

    2Н 2 + О 2 = 2Н 2 О

    Не имеет ни цвета, ни вкуса, ни запаха. Очень слабый электролит, но активно реагирует со многими металлами и неметаллами, основными и кислотными оксидами.

    2Н 2 О+2Na = 2NaOH + H 2

    Н 2 О + BaO = Ba(OH) 2

    3Н 2 О + P 2 O 5 = 2H 3 PO 4

    Тяжелая вода (D 2 O) – изотопная разновидность воды. Растворимость веществ в тяжелой воде значительно меньше чем в обычной. Тяжелая вода ядовита, так как замедляет биологические процессы в живых организмах. Накапливается в остатке электролиза при многоразовом электролизе воды. Используется как теплоноситель и замедлитель нейтронов в ядерных реакторах.

    Гидриды – взаимодействие водорода с металлами (при высокой температуре)или менее электроотрицательными чем водород неметаллами.

    Si + 2H 2 =SiH 4

    Сам же водород был открыт в первой половине 16в. Парацельсом. В 1776 Г. Кавендиш впервые исследовал его свойства, в 1783-1787 А. Лавуазье показал, что водород входит в состав воды, включил его в список химических элементов и предложил название «гидроген».


    Список литературы

    1. М.Б. Волович, О.Ф. Кабардин, Р.А. Лидин, Л.Ю. Аликберова, В.С. Рохлов, В.Б. Пятунин, Ю.А. Симагин, С.В Симонович/Справочник школьника/Москва «АСТ-ПРЕСС КНИГА» 2003.

    2. И.Л. Кнуняц /Химическая энциклопедия/Москва «Советская энциклопедия»1988

    3. И.Е. Шиманович /Химия 11/Минск «Народная асвета»2008

    4. Ф.Коттон, Дж. Уилкинсон/Современная неорганическая химия/ Москва «Мир» 1969

    Обобщающая схема «ВОДОРОД»

    I . Водород – химический элемент

    а) Положение в ПСХЭ

    • порядковый номер №1
    • период 1
    • группа I (главная подгруппа «А»)
    • относительная масса Ar(Н )=1
    • латинское название Hydrogenium (рождающий воду)

    б) Распространённость водорода в природе

    Водород - химический элемент.

    В земной коре (литосфера и гидросфера) – 1% по массе (10 место среди всех элементов)

    АТМОСФЕРА - 0,0001% по числу атомов

    Самый распространённый элемент во вселенной 92% от числа всех атомов (основная составная часть звёзд и межзвёздного газа)


    Водород – химический

    элемент

    В соединениях

    Н 2 О – вода (11% по массе)

    СН 4 – газ метан (25% по массе)

    Органические вещества (нефть, горючие природные газы и других)

    В организмах животных и растений (то есть в составе белков, нуклеиновых кислот, жиров, углеводов и других)

    В теле человека в среднем содержится около 7 килограммов водорода.

    в) Валентность водорода в соединениях


    II . Водород – простое вещество (Н 2)

    Получение

    1.Лаборатория (аппарат Киппа)

    А) Взаимодействие металлов с кислотами:

    Zn + 2HCl = ZnCl 2 + H 2

    соль

    Б) Взаимодействие активных металлов с водой:

    2Na + 2H 2 O = 2NaOH + H 2

    основание

    2. Промышленность

    · Электролиз воды

    эл. ток

    2H 2 O =2H 2 + O 2

    · Из природного газа

    t, Ni

    CH 4 + 2H 2 O=4H 2 +CO 2

    Нахождение водорода в природе.

    Водород широко распространен в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространенного вещества на Земле - воды (11,19% Водорода по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (то есть в состав белков, нуклеиновых кислот, жиров, углеводов и других). В свободном состоянии Водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного Водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве Водород в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе Водород является самым распространенным элементом. В виде плазмы он составляет около половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного Н 2 , метана СН 4 , аммиака NH 3 , воды Н 2 О, радикалов. В виде потока протонов Водород входит в состав корпускулярного излучения Солнца и космических лучей.

    Существуют три изотопа водорода:
    а) легкий водород – протий,
    б) тяжелый водород – дейтерий (D),
    в) сверхтяжелый водород – тритий (Т).

    Тритий неустойчивый (радиоактивный) изотоп, поэтому в природе он практически не встречается. Дейтерий устойчив, но его очень мало: 0,015% (от массы всего земного водорода).

    Валентность водорода в соединениях

    В соединениях водород проявляет валентность I .

    Физические свойства водорода

    Простое вещество водород (Н 2) – это газ, легче воздуха, без цвета, без запаха, без вкуса, t кип = – 253 0 С, водород в воде нерастворим , горюч. Собирать водород можно путем вытеснения воздуха из пробирки или воды. При этом пробирку нужно перевернуть вверх дном.

    Получение водорода

    В лаборатории водород получают в результате реакции

    Zn + H 2 SO 4 = ZnSO 4 + H 2 .

    Вместо цинка можно использовать железо, алюминий и некоторые другие металлы, а вместо серной кислоты – некоторые другие разбавленные кислоты. Образующийся водород собирают в пробирку методом вытеснения воды (см. рис. 10.2 б) или просто в перевернутую колбу (рис. 10.2 а).

    В промышленности в больших количествах водород получают из природного газа (в основном это метан) при взаимодействии его с парами воды при 800 °С в присутствии никелевого катализатора:

    CH 4 + 2H 2 O = 4H 2 +CO 2 (t, Ni)

    или обрабатывают при высокой температуре парами воды уголь:

    2H 2 O + С = 2H 2 + CO 2 . (t)

    Чистый водород получают из воды, разлагая ее электрическим током (подвергая электролизу):

    2H 2 O = 2H 2 + O 2 (электролиз).



    Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.
    Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.
    В одних условиях водород проявляет металлические свойства (отдает электрон), в других - неметаллические (принимает электрон).
    В природе встречаются изотопы водорода: 1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

    Простое вещество водород

    Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью.
    Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
    Водород легче воздуха, D (по воздуху) = 0,069; незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема H2). Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

    Получение водорода

    В лаборатории :

    1.Действие разбавленных кислот на металлы:
    Zn +2HCl → ZnCl 2 +H 2

    2.Взаимодействие щелочных и щ-з металлов с водой:
    Ca +2H 2 O → Ca(OH) 2 +H 2

    3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
    NaH +H 2 O → NaOH +H 2
    СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

    4.Действие щелочей на цинк или алюминий или кремний:
    2Al +2NaOH +6H 2 O → 2Na +3H 2
    Zn +2KOH +2H 2 O → K 2 +H 2
    Si + 2NaOH + H 2 O → Na 2 SiO 3 + 2H 2

    5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н 2 SO 4 или Na 2 SO 4 . На катоде образуется 2 объема водорода, на аноде - 1 объем кислорода.
    2H 2 O → 2H 2 +О 2

    Промышленное получение водорода

    1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
    CH 4 + H 2 O → CO + 3 H 2
    CO + H 2 O → CO 2 + H 2

    В сумме:
    CH 4 + 2 H 2 O → 4 H 2 + CO 2

    2. Пары воды через раскаленный кокс при 1000 о С:
    С + H 2 O → CO + H 2
    CO +H 2 O → CO 2 + H 2

    Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

    3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
    СH 4 → С + 2Н 2

    4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
    2Н 2 О + 2NaCl→ Cl 2 + H 2 + 2NaOH

    Химические свойства водорода

    • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
    • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н 2
    • Благодаря этому обобщению электронов молекула Н 2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н 2 = 2Н, ∆H° = 436 кДж/моль
    • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
    • Со многими неметаллами водород образует газообразные соедине­ния типа RН 4 , RН 3 , RН 2 , RН.

    1) С галогенами образует галогеноводороды:
    Н 2 + Cl 2 → 2НСl.
    При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

    2) С кислородом:
    2Н 2 + О 2 → 2Н 2 О
    с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом.

    3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
    Н 2 + S → H 2 S (сероводород),

    4) С азотом с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
    ЗН 2 + N 2 → 2NН 3

    5) С углеродом при высоких температурах:
    2Н 2 + С → СН 4 (метан)

    6) С щелочными и щелочноземельными металлами образует гидриды (водород – окислитель):
    Н 2 + 2Li → 2LiH
    в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H — построен подобно хлориду Na + Cl —

    Со сложными веществами:

    7) С оксидами металлов (используется для восстановления металлов):
    CuO + H 2 → Cu + H 2 O
    Fe 3 O 4 + 4H 2 → 3Fe + 4Н 2 О

    8) с оксидом углерода (II):
    CO + 2H 2 → CH 3 OH
    Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН 3 ОН и другие.

    9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
    С n Н 2n + Н 2 → С n Н 2n+2 .