Темы кодификатора ЕГЭ: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов.

Одну из первых моделей строения атома — «пудинговую модель » — разработал Д.Д. Томсон в 1904 году. Томсон открыл существование электронов, за что и получил Нобелевскую премию. Однако наука на тот момент не могла объяснить существование этих самых электронов в пространстве. Томсон предположил, что атом состоит из отрицательных электронов, помещенных в равномерно заряженный положительно «суп», который компенсирует заряд электронов (еще одна аналогия — изюм в пудинге). Модель, конечно, оригинальная, но неверная. Зато модель Томсона стала отличным стартом для дальнейших работ в этой области.

И дальнейшая работа оказалась эффективной. Ученик Томсона, Эрнест Резерфорд, на основании опытов по рассеянию альфа-частиц на золотой фольге предложил новую, планетарную модель строения атома.

Согласно модели Резерфорда, атом состоит из массивного, положительно заряженного ядра и частиц с небольшой массой — электронов, которые, как планеты вокруг Солнца, летают вокруг ядра, и на него не падают.

Модель Резерфорда оказалась следующим шагом в изучении строения атома. Однако современная наука использует более совершенную модель, предложенную Нильсом Бором в 1913 году. На ней мы и остановимся подробнее.

Атом — это мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

При этом электроны двигаются не по определенной орбите, как предполагал Резерфорд, а довольно хаотично. Совокупность электронов, которые двигаются вокруг ядра, называется электронной оболочкой .

А томное ядро , как доказал Резерфорд — массивное и положительно заряженное, расположено в центральной части атома. Структура ядра довольно сложна, и изучается в ядерной физике. Основные частицы, из которых оно состоит — протоны и нейтроны . Они связаны ядерными силами (сильное взаимодействие ).

Рассмотрим основные характеристики протонов , нейтронов и электронов :

Протон Нейтрон Электрон
Масса 1,00728 а.е.м. 1,00867 а.е.м. 1/1960 а.е.м.
Заряд + 1 элементарный заряд 0 — 1 элементарный заряд

1 а.е.м. (атомная единица массы) = 1,66054·10 -27 кг

1 элементарный заряд = 1,60219·10 -19 Кл

И — самое главное. Периодическая система химических элементов, структурированная Дмитрием Ивановичем Менделеевым, подчиняется простой и понятной логике: номер атома — это число протонов в ядре этого атома . Причем ни о каких протонах Дмитрий Иванович в XIX веке не слышал. Тем гениальнее его открытие и способности, и научное чутье, которое позволило перешагнуть на полтора столетия вперёд в науке.

Следовательно, заряд ядра Z равен числу протонов , т.е. номеру атома в Периодической системе химических элементов.

Атом — это на заряженная частица, следовательно, число протонов равно числу электронов: N e = N p = Z .

Масса атома (массовое число A ) равна суммарной массе крупных частиц, которе входят в состав атома — протонов и нейтронов. Поскольку масса протона и нетрона примерно равна 1 атомной единице массы, можно использовать формулу: M = N p + N n

Массовое число указано в Периодической системе химических элементов в ячейке каждого элемента.

Обратите внимание! При решении задач ЕГЭ массовое число всех атомов, кроме хлора, округляется до целого по правилам математики. Массовое число атома хлора в ЕГЭ принято считать равным 35,5.

В Периодической системе собраны химические элементы — атомы с одинаковым зарядом ядра. Однако, может ли меняться у этих атомов число остальных частиц? Вполне. Например, атомы с разным числом нейтронов называют изотопами данного химического элемента. У одного и того же элемента может быть несколько изотопов.

Попробуйте ответить на вопросы. Ответы на них — в конце статьи:

  1. У изотопов одного элемента массовое число одинаковое или разное?
  2. У изотопов одно элемента число протонов одинаковое или разное?

Химические свойства атомов определяются строением электронной оболочки и зарядом ядра. Таким образом, химические свойства изотопов одного элемента практически не отличаются.

Поскольку атомы одного элемента могут существовать в форме разных изотопов, в названии часто указывается массовое число, например, хлор-35, и принята такая форма записи атомов:

Еще немного вопросов:

3. Определите количество нейтронов, протонов и электронов в изотопе брома-81.

4. Определите число нейтронов в изотопе хлора-37.

Строение электронной оболочки

Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным ) орбитам , удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией. Другое название стационарны орбит — электронные слои или энергетические уровни .

Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n .

В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень . Тип подуровни характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.

В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l +1 . На каждой орбитали может находиться не более двух электронов.

Тип орбитали s p d f g
Значение орбитального квантового числа l 0 1 2 3 4
Число атомных орбиталей данного типа 2l +1 1 3 5 7 9
Максимальное количество электронов на орбиталях данного типа 2 6 10 14 18

Получаем сводную таблицу:

Номер уровня , n

Подуро-вень Число Максимальное количество электронов
1 1s 1 2
2 2s 1 2
2p 3 6
3s 1 2
3p 3 6
3d 5 10
4s 1 2
4p 3 6
4d 5 10
4f 7

Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.

Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).

Правило Хунда . На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону . Только когда во всех орбиталях данного подуровня распределено по одному электрону, занимаем орбитали вторыми электронами, с противоположными спинами.

Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной .

Например , заполнение 2р-орбитали тремя электронами будет происходить так: , а не так:

Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n + l . Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n .

АО 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5 g
n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5
l 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
n + l 1 2 3 3 4 5 4 5 6 7 5 6 7 8 9

Таким образом, энергетический ряд орбиталей выглядит так:

1 s < 2 s < 2 p < 3 s < 3 p < 4 s < 3 d < 4 p < 5 s < 4 d < 5 p < 6 s < 4 f ~ 5 d < 6 p < 7 s <5 f ~ 6 d

Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.

Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.

Например, энергетическая диаграмма для атома углерода:

Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s 2 означает, что на 1 уровне s-подуровне расположено 2 электрона.

Например , электронная формула углерода выглядит так: 1s 2 2s 2 2p 2 .

Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую электронную конфигурацию.

Например , электронную формулу азота можно записать так: 1s 2 2s 2 2p 3 или так: 2s 2 2p 3 .

1s 2 =

1s 2 2s 2 2p 6 =

1s 2 2s 2 2p 6 3s 2 3p 6 = и так далее.

Электронные формулы элементов первых четырех периодов

Рассмотрим заполнение электронами оболочки элементов первых четырех периодов. У водорода заполняется самый первый энергетический уровень, s-подуровень, на нем расположен 1 электрон:

+1H 1s 1 1s

У гелия 1s-орбиталь полностью заполнена:

+2He 1s 2 1s

Поскольку первый энергетический уровень вмещает максимально 2 электрона, у лития начинается заполнение второго энергетического уровня, начиная с орбитали с минимальной энергией — 2s. При этом сначала заполняется первый энергетический уровень:

+3Li 1s 2 2s 1 1s 2s

У бериллия 2s-подуровень заполнен:

+4Be 1s 2 2s 2 1s 2s

+5B 1s 2 2s 2 2p 1 1s 2s 2p

У следующего элемента, углерода , очередной электрон, согласно правилу Хунда, заполняет вакантную орбиталь, а не подселяется в частично занятую:

+6C 1s 2 2s 2 2p 2 1s 2s 2p

Попробуйте составить электронную и электронно-графическую формулы для следующих элементов, а затем можете проверить себя по ответам конце статьи:

5. Азот

6. Кислород

7. Фтор

У неона завершено заполнение второго энергетического уровня:

+10Ne 1s 2 2s 2 2p 6 1s 2s 2p

У натрия начинается заполнение третьего энергетического уровня:

+11Na 1s 2 2s 2 2p 6 3s 1 1s 2s 2p 3s

От натрия до аргона заполнение 3-го уровня происходит в том же порядке, что и заполнение 2-го энергетического уровня. Предалагаю составить электронные формулы элементов от магния до аргона самостоятельно, проверить по ответам.

8. Магний

9. Алюминий

10. Кремний

11. Фосфор

12. Сера

13. Хлор

14. Аргон

А вот начиная с 19-го элемента, калия , иногда начинается путаница — заполняется не 3d-орбиталь, а 4s . Ранее мы упоминали в этой статье, что заполнение энергетических уровней и подуровней электронами происходит по энергетическому ряду орбиталей , а не по порядку. Рекомендую повторить его еще раз. Таким образом, формула калия :

+19K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 1s 2s 2p3s 3p4s

Для записи дальнейших электронных формул в статье будем использовать сокращенную форму:

+19K 4s 1 4s

У кальция 4s-подуровень заполнен:

+20Ca 4s 2 4s

У элемента 21, скандия , согласно энергетическому ряду орбиталей, начинается заполнение 3d -подуровня:

+21Sc 3d 1 4s 2 4s 3d

Дальнейшее заполнение 3d -подуровня происходит согласно квантовым правилам, от титана до ванадия :

+22Ti 3d 2 4s 2 4s 3d

+23V 3d 3 4s 2 4s 3d

Однако, у следующего элемента порядок заполнения орбиталей нарушается. Электронная конфигурация хрома такая:

+24Cr 3d 5 4s 1 4s 3d

В чём же дело? А дело в том, что при «традиционном» порядке заполнения орбиталей (соответственно, неверном в данном случае — 3d 4 4s 2 ) ровно одна ячейка в d -подуровне оставалась бы незаполненной. Оказалось, что такое заполнение энергетически менее выгодно . А более выгодно , когда d -орбиталь заполнена полностью, хотя бы единичными электронами. Этот лишний электрон переходит с 4s -подуровня. И небольшие затраты энергии на перескок электрона с 4s -подуровня с лихвой покрывает энергетический эффект от заполнения всех 3d- орбителей. Этот эффект таки называется — провал или проскок электрона . И наблюдается он, когда d -орбиталь недозаполнена на 1 электрон (по одному электрону в ячейке или по два).

У следующих элементов «традиционный» порядок заполнения орбиталей снова возвращается. Конфигурация марганца :

+25Mn 3d 5 4s 2

Аналогично у кобальта и никеля . А вот у меди мы снова наблюдаем провал (проскок) электрона — электрон опять проскакивает с 4s -подуровня на 3d- подуровень :

+29Cu 3d 10 4s 1

На цинке завершается заполнение 3d-подуровня:

+30Zn 3d 10 4s 2

У следующих элементов, от галлия до криптона , происходит заполнение 4p-подуровня по квантовым правилам. Например, электронная формула галлия :

+31Ga 3d 10 4s 2 4p 1

Формулы остальных элементов мы приводить не будем, можете составить их самостоятельно и проверить себя в Интернете.

Некоторые важные понятия:

Внешний энергетический уровень — это энергетический уровень в атоме с максимальным номером, на котором есть электроны. Например , у меди (3d 10 4s 1 ) внешний энергетический уровень — четвёртый.

Валентные электроны — электроны в атоме, которые могут участвоват ьв образовании химической связи. Например, у хрома (+24Cr 3d 5 4s 1 ) валентными являются не только электроны внешнего энергетического уровня (4s 1 ), но и неспаренные электроны на 3d -подуровне, т.к. они могут образовывать химические связи.

Основное и возбужденнео состояние атома

Электронные формулы, которые мы составляли до этого, соответствуют основному энергетическому состоянию атома . Это наиболее выгодное энергетически состояние атома.

Однако, чтобы образовывать , атому в большинстве ситуаций необходимо наличие неспаренных (одиночных) электронов . А химические связиь энергетически очень для атома выгодны. Следовательно, чем больше в атоме неспаренных электронов — тем больше связей он может образовать, и, как следствие, перейдёт в более выгодное энергетическое состояние.

Поэтому при наличии свободных энергетических орбиталей на данном уровне спаренные пары электронов могут распариваться , и один из электронов спаренной пары может переходить на вакантную орбиталь. Таким образом число неспаренных электронов увеличивается , и атом может образовать больше химических связей , что очень выгодно с точки зрения энергии. Такое состояние атома называют возбуждённым и обозначают звёздочкой.

Например, в основном состоянии бор имеет следующую конфигурацию энергетического уровня:

+5B 1s 2 2s 2 2p 1 1s 2s 2p

На втором уровне (внешнем) одна спаренная электронная пара, один одиночный электрон и пара свободных (вакантных) орбиталей. Следовательно, есть возможность для перехода электрона из пары на вакантную орбиталь, получаем возбуждённое состояние атома бора (обозначается звёздочкой):

+5B* 1s 2 2s 1 2p 2 1s 2s 2p

Попробуйте самостоятельно составить электронную формулу, соответствующую возбуждённому состоянию атомов. Не забываем проверять себя по ответам!

15. Углерода

16. Бериллия

17. Кислорода

Электронные формулы ионов

Атомы могут отдавать и принимать электроны. Отдавая или принимая электроны, они превращаются в ионы .

Ионы — это заряженные частицы. Избыточный заряд обозначается индексом в правом верхнем углу.

Если атом отдаёт электроны, то общий заряд образовавшейся частицы будет положительный (вспомним, что число протонов в атоме равно числу электронов, а при отдаче электронов число протонов будет больше числа электронов). Положительно заряженные ионы — это катионы . Например : катион натрия образуется так:

+11Na 1s 2 2s 2 2p 6 3s 1 -1е = +11Na + 1s 2 2s 2 2p 6 3s 0

Если атом принимает электроны, то приобретает отрицательный заряд . Отрицательно заряженные частицы — это анионы . Например , анион хлора обраузется так:

+17Cl 1s 2 2s 2 2p 6 3s 2 3p 5 +1e = +17Cl — 1s 2 2s 2 2p 6 3s 2 3p 6

Таким образом, электронные формулы ионов можно получить добавив или отняв электроны у атома . Обратите внимание , при образовании катионов электроны уходят с внешнего энергетического уровня . При образовании анионов электроны приходят на внешний энергетический уровень .

Атом - электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Ядро находится в центре атома и состоит из положительно заряженных протонов и незаряженных нейтронов, удерживаемых ядерными силами. Ядерное строение атома экспериментально доказал в 1911 г. английский физик Э.Резерфорд.

Число протонов определяет положительный заряд ядра и равно порядковому номеру элемента. Число нейтронов вычисляется как разность атомной массы и порядкового номера элемента. Элементы, имеющие одинаковый заряд ядра (одинаковое число протонов), но разную атомную массу (разное количество нейтронов) называются изотопами. Масса атома в основном сосредоточена в ядре, т.к. ничтожно малой массой электронов можно пренебречь. Атомная масса равна сумме масс всех протонов и всех нейтронов ядра.
Химический элемент - это вид атомов с одинаковым зарядом ядра. В настоящее время известно 118 различных химических элементов.

Все электроны атома образуют его электронную оболочку. Электронная оболочка имеет отрицательный заряд, равный общему количеству электронов. Число электронов в оболочке атома совпадает с числом протонов в ядре и равно порядковому номеру элемента. Электроны в оболочке распределены по электронным слоям согласно запасам энергии (электроны с близкими значениями энергий образуют один электронный слой): электроны с меньшей энергией находятся ближе к ядру, электроны с большей энергией находятся дальше от ядра. Число электронных слоёв (энергетических уровней) совпадает с номером периода, в котором располагается химический элемент.

Различают завершённые и незавершённые энергетические уровни. Уровень считается завершённым, если содержит максимально возможное количество электронов (первый уровень - 2 электрона, второй уровень - 8 электронов, третий уровень - 18 электронов, четвёртый уровень - 32 электрона и т.д.). Незавершённый уровень содержит меньшее число электронов.
Уровень, максимально удалённый от ядра атома, называется внешним. Электроны, находящиеся на внешнем энергетическом уровне, называются внешними (валентными) электронами. Число электронов на внешнем энергетическом уровне совпадает с номером группы, в которой находится химический элемент. Внешний уровень считается завершённым, если содержит 8 электронов. Завершённым внешним энергетическим уровнем обладают атомы элементов 8А группы (инертные газы гелий, неон, криптон, ксенон, радон).

Область пространства вокруг ядра атома, в которой наиболее вероятно нахождение электрона, называют электронной орбиталью. Орбитали отличаются уровнем энергии и формой. По форме различают s-орбитали (сфера), p-орбитали (объёмная восьмёрка), d-орбитали и f-орбитали. На каждом энергетическом уровне есть свой набор орбиталей: на первом энергетическом уровне - одна s-орбиталь, на втором энергетическом уровне - одна s- и три p-орбитали, на третьем энергетическом уровне - одна s-, три p-, пять d-орбиталей, на четвертом энергетическом уровне одна s-, три p-, пять d-орбиталей и семь f-орбиталей. На каждой орбитале могут располагаться максимально два электрона.
Распределение электронов по орбиталям отражается с помощью электронных формул. Например, для атома магния распределение электронов по энергетическим уровням будет следующим: 2е, 8е, 2е. Данная формула показывает, что 12 электронов атома магния распределены по трём энергетическим уровням: первый уровень завершён и содержит 2 электрона, второй уровень завершён и содержит 8 электронов, третий уровень не завершён, т.к. содержит 2 электрона. Для атома кальция распределение электронов по энергетическим уровням будет следующим: 2е, 8е, 8е, 2е. Данная формула показывает, что 20 электронов кальция распределены по четырём энергетическим уровням: первый уровень завершён и содержит 2 электрона, второй уровень завершён и содержит 8 электронов, третий уровень не завершён, т.к. содержит 8 электронов, четвёртый уровень не завершён, т.к. содержит 2 электрона.

Основные положения атомно-молекулярной теории. Основные стехиометрические законы химии. Законы сохранения массы вещества, постоянства состава, объемных отношений, Авогадро, эквивалентов. Молярная масса эквивалента. Способы определения атомных и молекулярных масс.

Все веществ состоят из молекул.

Молекула - это наименьшая частица вещества, сохраняющая свойства тогo вещества. Молекулы разрушаются при химических реакциях.

Между молекулами имеются промежутки: у газов - самые большие, у твердых веществ - самые маленькие.

Молекулы двигаются беспорядочно и непрерывно.

Молекулы одного вещества имеют одинаковый состав и свойства, молекулы разных веществ отличаются друг от. друга по составу и свойствам.

Молекулы состоят из атомов.

Атом - это электронейтральная частица, состоящая из положительно заряженного ядра и электронов.

Химический элемент - вид атомов с одинаковым положительным зарядом ядра.

Атомы одного элемента образуют молекулы простого вещества (02, Н2, О3, Fe...). Атомы разных элементов образуют молекулы сложного вещества (Н20, Na2S04, FeClg...).

Закон сохранения массы

Масса веществ, вступивших в химическую реакцию, равна массе веществ, образующихся в результате реакции.

ученым М.В. Ломоносовым.
Закон постоянства состава

Всякое химически чистое соединение независимо от способа его получения имеет вполне определенный состав.

На основании этого закона состав веществ выражается химической формулой с помощью химических знаков и индексов. Например, Н 2 О, СН 4 , С 2 Н 5 ОН и т.п.

Закон постоянства состава справедлив для веществ молекулярного строения.

Состав соединений молекулярного строения, то есть состоящих из молекул, является постоянным независимо от способа получения.
Закон эквивалентов

Химические элементы соединяются друг с другом в строго определенных количествах, соответствующих их эквивалентам.

Эквивалентное соотношение означает одинаковое число моль эквивалентов. Т.о. закон эквивалентов можно сформулировать иначе: число моль эквивалентов для всех веществ, участвующих в реакции, одинаково.

Закон кратных отношений

Кратных отношений закон Дальтона, один из основных законов химии: если два вещества (простых или сложных) образуют друг с другом более одного соединения, то массы одного вещества, приходящиеся на одну и ту же массу другого вещества, относятся как целые числа, обычно небольшие.

Закон объемных отношений

Гей-Люссак, 1808 г.

"Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа".

Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.

V 1:V 2:V 3 = ν 1:ν 2:ν 3 .

Периодический закон и периодическая система элементов Д.И.Менделеева. Основные представления о строении атома и ядра. Периодически изменяющиеся и периодически неизменяющиеся свойства атомов и ионов. Варианты периодической таблицы.

Периодические изменения свойств химических элементов обусловлены правильным повторением электронной конфигурации внешнего энергетического уровня (валентных электронов) их атомов с увеличением заряда ядра.

Графическим изображением периодического закона является периодическая таблица. Она содержит 7 периодов и 8 групп.

Период - горизонтальные ряды элементов с одинаковым максимальным значением главного квантового числа валентных электронов.

Номер периода обозначает число энергетических уровней в атоме элемента.

Периоды могут состоять из 2 (первый), 8 (второй и третий), 18 (четвертый и пятый) или 32 (шестой) элементов, в зависимости от количества электронов на внешнем энергетическом уровне. Последний, седьмой период незавершен.

Все периоды (кроме первого) начинаются щелочным металлом (s-элементом), а заканчиваются благородным газом (ns 2 np 6).

Металлические свойства рассматриваются, как способность атомов элементов легко отдавать электроны, а неметаллические - присоединять электроны из-за стремления атомов приобрести устойчивую конфигурацию с заполненными подуровнями.

Группы - вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы.

Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns- и np- подуровнях.

Побочные подгруппы состоят из элементов только больших периодов. Их валентные электроны находятся на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне).

В зависимости от того, какой подуровень (s-, p-, d- или f-) заполняется валентными электронами, элементы периодической системы подразделяются на:

s- элементы (элементы главной подгруппы I и II групп),

p- элементы (элементы главных подгрупп III - VII групп),

d- элементы (элементы побочных подгрупп),

f- элементы (лантаноиды, актиноиды).

Состав атома.

Атом состоит из атомного ядра и электронной оболочки.
Ядро атома состоит из протонов (p + ) и нейтронов (n 0).

Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом или атомным номером (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze , где e – элементарный заряд. Число нейтронов обозначают символом N .

Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A :

A = Z + N .

Ядра химических элементов обозначают символом , где X – химический символ элемента. Например,
– водород, – гелий, – углерод, – кислород, – уран.

Изотоп - совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).
Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.
Обозначение отдельного атома или изотопа: (Э - символ элемента), например: .

Строение электронной оболочки атома

Атомная орбиталь - состояние электрона в атоме. Условное обозначение орбитали - . Каждой орбитали соответствует электронное облако.
Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f
Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение - .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение - .
f -подуровень (состоит из семи f -орбиталей), условное обозначение - .
Энергии орбиталей одного подуровня одинаковы.
При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.
Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .
Обозначения: - свободная орбиталь (без электронов), - орбиталь с неспаренным электроном, - орбиталь с электронной парой (с двумя электронами).
Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):
1. Принцип наименьшей энергии - электроны заполняют орбитали в порядке возрастания энергии орбиталей.
2. Принцип Паули - на одной орбитали не может быть больше двух электронов.
3. Правило Хунда - в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.
Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .
Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p ...

Примеры электронного строения атомов:

Валентные электроны - электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних.

Например: у атома Ca внешние электроны - 4s 2 , они же и валентные; у атома Fe внешние электроны - 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция - 4s 2 , а атома железа - 4s 2 3d 6 .

Атом – мельчайшая частица вещества, состоящая из ядра и электронов. Строение электронных оболочек атомов определяется положением элемента в Периодической системе химических элементов Д. И. Менделеева.

Электрон и электронная оболочка атома

Атом, который в целом является нейтральным, состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки (электронное облако), при этом, суммарные положительные и отрицательные заряды равны по абсолютной величине. При вычислении относительной атомной массы массу электронов не учитывают, так как она ничтожно мала и в 1840 раз меньше массы протона или нейтрона.

Рис. 1. Атом.

Электрон – совершенно уникальная частица, которая имеет двойственную природу: он имеет одновременно свойства волны и частицы. Они непрерывно движутся вокруг ядра.

Пространство вокруг ядра, где вероятность нахождения электрона наиболее вероятна, называют электронной орбиталью, или электронным облаком. Это пространство имеет определенную форму, которая обозначается буквами s-, p-, d-, и f-. S-электронная орбиталь имеет шаровидную форму, p-орбиталь имеет форму гантели или объемной восьмерки, формы d- и f-орбиталей значительно сложнее.

Рис. 2. Формы электронных орбиталей.

Вокруг ядра электроны расположены на электронных слоях. Каждый слой характеризуется расстоянием от ядра и энергией, поэтому электронные слои часто называют электронными энергетическими уровнями. Чем ближе уровень к ядру, тем меньше энергия электронов в нем. Один элемент отличается от другого числом протонов в ядре атома и соответственно числом электронов. Следовательно, число электронов в электронной оболочке нейтрального атома равно числу протонов, содержащимся в ядре этого атома. Каждый следующий элемент имеет в ядре на один протон больше, а в электронной оболочке – на один электрон больше.

Вновь вступающий электрон занимает орбиталь с наименьшей энергией. Однако максимальное число электронов на уровне определяется формулой:

где N – максимальное число электронов, а n – номер энергетического уровня.

На первом уровне может быть только 2 электрона, на втором – 8 электронов, на третьем – 18 электронов, а на четвертом уровне – 32 электрона. На внешнем уровне атома не может находится больше 8 электронов: как только число электронов достигает 8, начинает заполняться следующий, более далекий от ядра уровень.

Строение электронных оболочек атомов

Каждый элемент стоит в определенном периоде. Период – это горизонтальная совокупность элементов, расположенных в порядке возрастания заряда ядер их атомов, которая начинается щелочным металлом, а заканчивается инертным газом. Первые три периода в таблице – малые, а следующие, начиная с четвертого периода – большие, состоят из двух рядов. Номер периода, в котором находится элемент имеет физический смысл. Он означает, сколько электронных энергетических уровней имеется в атоме любого элемента данного периода. Так, элемент хлор Cl находится в 3 периоде, то есть его электронная оболочка имеет три электронных слоя. Хлор стоит в VII группе таблицы, причем в главной подгруппе. Главной подгруппой называется столбец внутри каждой группы, который начинается с 1 или 2 периода.

Таким образом, состояние электронных оболочек атома хлора таково: порядковый номер элемента хлора – 17, что означает, что атом имеет в ядре 17 протонов, а в электронной оболочке – 17 электронов. На 1 уровне может быть только 2 электрона, на 3 уровне – 7 электронов, так как хлор находится в главной подруппе VII группы. Тогда на 2 уровне находится:17-2-7=8 электронов.

Цель урока: Сформировать представления учащихся о строении электронной оболочки атома на примере химических элементов 1–3 периодов периодической системы. Закрепить понятия “периодический закон” и “периодическая система”.

Задачи урока: Научиться составлять электронные формулы атомов, определять элементы по их электронным формулам, определять состав атома.

Оборудование: Периодическая система химических элементов Д.И. Менделеева, классная доска, мультимедиа-проектор, персональный компьютер, макет и презентация “Составление электронных формул строения атомов”.

Тип урока: комбинированный

Методы: словесный, наглядный.

Ход урока

I. Организационный момент.

Приветствие. Отметка отсутствующих. Активизация класса на усвоение новой темы.

Учитель проговаривает и записывает тему урока на доске “Строение электронных оболочек атома”.

II. Объяснение нового материала

Учитель: В начале XX века была принята планетарная модель строения атома , предложенная Резерфордом, согласно которой вокруг очень малого по размерам положительно заряженного ядра движутся электроны, как планеты вокруг Солнца. (Презентация. Слайд 1. Модель Резерфорда).

Следовательно, в атоме есть траектории, по которым движется электрон. Однако дальнейшие исследования показали, что в атоме не существует траекторий движения электронов. Движение без траектории означает, что мы не знаем, как электрон движется в атоме, но можем установить область, где чаще всего встречается электрон. Это уже не орбита, а орбиталь. Двигаясь вокруг атома, электроны образуют в совокупности его электронную оболочку .

Давайте выясним, как движутся электроны вокруг ядра? Беспорядочно или в определенном порядке? Исследования Нильса Бора – основоположника современной атомной физики, а также ряда других ученых позволили сделать вывод: электроны в атомах располагаются определенными слоями – оболочками и в определенном порядке.

Строение электронных оболочек атомов имеют важную роль для химии, так как именно электроны обуславливают химические свойства веществ. Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром. Электроны в атоме различаются определенной энергией, и, как показывают опыты, одни притягиваются к ядру сильнее, другие слабее. Объясняется это удаленностью электронов от ядра. Чем ближе электроны к ядру, тем больше связь их с ядром, но меньше запас энергии. По мере удаления от ядра атома сила притяжения электрона к ядру уменьшается, а запас энергии увеличивается. Так образуются электронные слои в электронной оболочке атома.Электроны, обладающие близкими значениями энергии образуют единый электронный слой, или энергетический уровень . Энергия электронов в атоме и энергетический уровень определяется главным квантовым числом n и принимает целочисленные значения 1, 2, 3, 4, 5, 6 и 7. Чем больше значение n, тем больше энергия электрона в атоме. Максимальное число электронов, которое может находиться на том или ином энергетическом уровне, определяется по формуле:

Где N – максимальное число электронов на уровне;

n – номер энергетического уровня.

Установлено, что на первой оболочке располагается не более двух электронов, на второй – не более восьми, на третьей – не более 18, на четвертой – не более 32. Заполнение более далеких оболочек мы рассматривать не будем. Известно, что на внешнем энергетическом уровне может находиться не более восьми электронов, его называют завершенным . Электронные слои, не содержащие максимального числа электронов, называют незавершенными .

Число электронов на внешнем энергетическом уровне электронной оболочки атома равно номеру группы для химических элементов главных подгрупп.

Как ранее было сказано, электрон движется не по орбите, а по орбитали и не имеет траектории.

Пространство вокруг ядра, где наиболее вероятно нахождение данного электрона, называется орбиталью этого электрона, или электронным облаком.

Орбитали, или подуровни, как их еще называют, могут иметь разную форму, и их количество соответствует номеру уровня, но не превышает четырех. Первый энергетический уровень имеет один подуровень (s ), второй – два (s,p ), третий – три (s,p,d ) и т.д. Электроны разных подуровней одного и того же уровня имеют разную форму электронного облака: сферическую (s), гантелеобразную (p) и более сложную конфигурацию (d) и (f). Сферическую атомную орбиталь ученые договорились называть s -орбиталью . Она самая устойчивая и располагается довольно близко к ядру.

Чем больше энергия электрона в атоме, тем быстрее он вращается, тем сильнее вытягивается область его пребывания, и, наконец, превращается в гантелеобразную p -орбиталь :

Электронное облако такой формы может занимать в атоме три положения вдоль осей координат пространства x , y и z . Это легко объяснимо: ведь все электроны заряжены отрицательно, поэтому электронные облака взаимно отталкиваются и стремятся разместиться как можно дальше друг от друга.

Итак, p -орбиталей может быть три. Энергия их, конечно, одинакова, а расположение в пространстве – разное.

Составить схему последовательного заполнения электронами энергетических уровней

Теперь мы можем составить схему строения электронных оболочек атомов:

  1. Определяем общее число электронов на оболочке по порядковому номеру элемента.
  2. Определяем число энергетических уровней в электронной оболочке. Их число равно номеру периода в таблице Д. И. Менделеева, в котором находится элемент.
  3. Определяем число электронов на каждом энергетическом уровне.
  4. Используя для обозначения уровня арабские цифры и обозначая орбитали буквами s и p, а число электронов данной орбитали арабской цифрой вверху справа над буквой, изображаем строение атомов более полными электронными формулами. Ученые условились обозначать каждую атомную орбиталь квантовой ячейкой – квадратиком на энергетической диаграмме :

На s -подуровне может находиться одна атомная орбиталь

а на p - подуровне их может быть уже три –

(в соответствии с тремя осями координат):

Орбиталей d и f - подуровня в атоме может быть уже пять и семь соответственно:

Ядро атома водорода имеет заряд +1, поэтому вокруг его ядра движется только один электрон на единственном энергетическом уровне. Запишем электронную конфигурацию атома водорода

Чтобы установить связь между строением атома химического элемента и его свойствами, рассмотрим еще несколько химических элементов.

Следующий за водородом элемент-гелий. Ядро атома гелия имеет заряд +2, поэтому атом гелия содержит два электрона на первом энергетическом уровне:

Так как на первом энергетическом уровне может находиться не более двух электронов, то он считается завершенным.

Элемент № 3 – литий. Ядро лития имеет заряд +3, следовательно, в атоме лития три электрона. Два из них находятся на первом энергетическом уровне, а третий электрон начинает заполнять второй энергетический уровень. Сначала заполняется s-орбиталь первого уровня, потом s-орбиталь второго уровня. Электрон, находящийся на втором уровне слабее связан с ядром, чем два других.

Для атома углерода уже можно предположить три возможных схемы заполнения электронных оболочек в соответствии с электронно-графическими формулами:

Анализ атомного спектра показывает, что правильна последняя схема. Пользуясь этим правилом, нетрудно составить схему электронного строения для атома азота:

Этой схеме соответствует формула 1s 2 2s 2 2p 3 . Затем начинается попарное размещение электронов на 2p-орбиталях. Электронные формулы остальных атомов второго периода:

У атома неона заканчивается заполнение второго энергетического уровня, и завершается построение второго периода системы элементов.

Найдите в периодической системе химический знак лития, от лития до неона Ne закономерно возрастает заряд ядер атомов. Постепенно заполняется электронами второй слой. С ростом числа электронов на втором слое металлические свойства элементов постепенно ослабевают и сменяются неметаллическими.

Третий период, подобно второму, начинается с двух элементов (Na, Mg), у которых электроны размещаются на s-подуровне внешнего электронного слоя. Затем следуют шесть элементов (от Al до Ar), у которых происходит формирование p-подуровня внешнего электронного слоя. Структура внешнего электронного слоя соответствующих элементов второго и третьего периодов оказывается аналогичной. Иначе говоря, с увеличением заряда ядра электронная структура внешних слоев атомов периодически повторяется. Если элементы имеют одинаково устроенные внешние энергетические уровни, то и свойства этих элементов подобны. Скажем, аргон и неон содержат на внешнем уровне по восемь электронов, и потому они инертны, то есть почти не вступают в химические реакции. В свободном виде аргон и неон – газы, которые имеют одноатомные молекулы.

Атомы лития, натрия и калия содержат на внешнем уровне по одному электрону и обладают сходными свойствами, поэтому они помещены в одну и ту же группу периодической системы.

III. Выводы.

1. Свойства химических элементов, расположенных в порядке возрастания заряда ядра, периодически повторяются, так как периодически повторяется строение внешних энергетических уровней атомов элементов.

2. Плавное изменение свойств химических элементов в пределах одного периода можно объяснить постепенным увеличением числа электронов на внешнем энергетическом уровне.

3. Причина сходства свойств химических элементов, принадлежащих к одному семейству, заключается в одинаковом строении внешних энергетических уровней их атомов.

IV. Закрепление нового материала.

Задание для класса:

1. Изобразите строение атомов следующих элементов:

а) натрия;
б) кремния

2. Сравните строение атомов азота и фосфора.

3. По данным о распределении валентных электронов найдите элемент:

а) 1s 2 2s 1
б) 1s 2 2s 2 2p 6 3s 2 3p 6
в) 1s 2 2s 2 2p 6 3s 2 3p 4
г) 1s 2 2s 2 2p 4
д) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

4. Используя компьютерную презентацию “Составление электронных формул строения атомов” составьте электронные формулы атомов а) азота; б) серы.

5. Используя макет “Составление электронных формул строения атомов” электронные формулы атомов: а) магния; б) кислорода.

V. Домашнее задание: § 8, Стр. 28-33.

Нарисуйте схемы строения электронных оболочек атомов: бора, хлора, лития, алюминия.