• Физические и химические выражения порций, долей и количества вещества. Атомная единица массы, а.е.м. Моль вещества, постоянная Авогадро. Молярная масса. Относительные атомная и молекулярная масса вещества. Массовая доля химического элемента
  • Строение вещества. Ядерная модель строения атома. Состояние электрона в атоме. Заполнение электронами орбиталей, принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Хунда
  • Периодический закон в современной формулировке. Периодическая система. Физический смысл периодического закона. Структура периодической системы. Изменение свойств атомов химических элементов главных подгрупп. План характеристики химического элемента.
  • Периодическая система Менделеева. Высшие оксиды. Летучие водородные соединения. Растворимость, относительные молекулярные массы солей, кислот, оснований, оксидов, органических веществ. Ряды электроотрицательности, анионов, активности и напряжений металлов
  • Вы сейчас здесь: Электрохимический ряд активности металлов и водорода таблица, электрохимический ряд напряжений металлов и водорода, ряд электроотрицательности химических элементов, ряд анионов
  • Химическая связь. Понятия. Правило октета. Металлы и неметаллы. Гибридизация электронных орбиталей. Валентные электроны, понятие валентности, понятие электроотрицательности
  • Виды химической связи. Ковалентная связь - полярная, неполярная. Характеристики, механизмы образования и виды ковалентной связи. Ионная связь. Степень окисления. Металлическая связь. Водородная связь.
  • Химические реакции. Понятия и признаки, Закон сохранения массы, Типы (соединения, разложения, замещения, обмена). Классификация: Обратимые и необратимые, Экзотермические и эндотермические, Окислительно-восстановительные, Гомогенные и гетерогенные
  • Важнейшие классы неорганических веществ. Оксиды. Гидроксиды. Соли. Кислоты, основания, амфотерные вещества. Важнейшие кислоты и их соли. Генетическая связь важнейших классов неорганических веществ.
  • Химия неметаллов. Галогены. Сера. Азот. Углерод. Инертные газы
  • Химия металлов. Щелочные металлы. Элементы IIА группы. Алюминий. Железо
  • Закономерности течения химических реакций. Скорость химической реакции. Закон действующих масс. Правило Вант-Гоффа. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле Шателье. Катализ
  • Растворы. Электролитическая диссоциация. Понятия, растворимость, электролитическая диссоциация, теория электролитическoй диссоциации, степень диссоциации, диссоциация кислот, оснований и солей, нейтральная, щелочная и кислая среда
  • Реакции в растворах электролитов + Окислительно-восстановительные реакции. (Реакции ионного обмена. Образование малорастворимого, газообразного, малодиссоциирующего вещества. Гидролиз водных растворов солей. Окислитель. Восстановитель.)
  • Классификация органических соединений. Углеводороды. Производные углеводородов. Изомерия и гомология органических соединений
  • Важнейшие производные углеводородов: спирты, фенолы, карбонильные соединения, карбоновые кислоты, амины, аминокислоты
  • Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Pb, H 2 , Cu, Ag, Hg, Au

    Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

    Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

    Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

    Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

    Взаимодействие с простыми веществами

      С кислородом большинство металлов образует оксиды – амфотерные и основные:

    4Li + O 2 = 2Li 2 O,

    4Al + 3O 2 = 2Al 2 O 3 .

    Щелочные металлы, за исключением лития, образуют пероксиды:

    2Na + O 2 = Na 2 O 2 .

      С галогенами металлы образуют соли галогеноводородных кислот, например,

    Cu + Cl 2 = CuCl 2 .

      С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

    2Na + H 2 = 2NaH.

      С серой металлы образуют сульфиды – соли сероводородной кислоты:

      С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

    3Mg + N 2 = Mg 3 N 2 .

      С углеродом образуются карбиды:

    4Al + 3C = Al 3 C 4 .

      С фосфором – фосфиды:

    3Ca + 2P = Ca 3 P 2 .

      Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

    2Na + Sb = Na 2 Sb,

    3Cu + Au = Cu 3 Au.

      Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы .

    Сплавы

    Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

    Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

    Возможны следующие типы сплавов:

    Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

    Расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

    Цель работы: ознакомиться на опыте с зависимостью окислительно-восстановительных свойств металлов от их положения в электрохимическом ряду напряжений.

    Оборудование и реактивы: пробирки, держатели для пробирок, спиртовка, фильтровальная бумага, пипетки, 2н. растворы HCl и H 2 SO 4 , концентрированная H 2 SO 4 , разбавленная и концентрированная HNO 3 , 0,5М растворы CuSO 4 , Pb(NO 3) 2 или Pb(CH 3 COO) 2 ; кусочки металлических алюминия, цинка, железа, меди, олова, железные канцелярские скрепки, дистиллированная вода.

    Теоретические пояснения

    Химический характер какого-либо металла в значительной степени обусловлен тем, насколько он легко окисляется, т.е. насколько легко его атомы способны переходить в состояние положительных ионов.

    Металлы, которые проявляют легкую способность окисляться, называются неблагородными. Металлы, которые окисляются с большим трудом, называются благородными.

    Каждый металл характеризуется определенным значением стандартного электродного потенциала. За стандартный потенциал j 0 данного металлического электрода принимается ЭДС гальванического элемента, составленного из стандартного водородного электрода, расположенного слева, и пластинки металла, помещенной в раствор соли этого металла, причем активность (в разбавленных растворах можно использовать концентрацию) катионов металла в растворе должна бать равна 1 моль/л; Т=298 К; р=1 атм. (стандартные условия). Если условия реакции отличны от стандартных, нужно учитывать зависимость электродных потенциалов от концентраций (точнее активностей) ионов металлов в растворе и температуры.

    Зависимость электродных потенциалов от концентрации выражается уравнением Нернста, которое применительно к системе:

    Me n + + n e - Me

    В ;

    R – газовая постоянная, ;

    F – постоянная Фарадея (»96500 Кл/моль );

    n –

    а Ме n + - моль/л .

    Принимая значение Т =298К, получим

    моль/л.

    j 0 , отвечающих полуреакции восстановления, получают ряд напряжений металлов (ряд стандартных электродных потенциалов). В этот же ряд помещают стандартный электродный потенциал водорода, принимаемый за нуль, для системы, в которой протекает процесс:

    2Н + +2е - = Н 2

    При этом, стандартные электродные потенциалы неблагородных металлов имеют отрицательное значение, а благородных – положительное.

    Электрохимический ряд напряжений металлов

    Li; K; Ba; Sr; Ca; Na; Mg; Al; Mn; Zn; Cr; Fe; Cd; Co; Ni; Sn; Pb; ( H) ; Sb; Bi; Cu; Hg; Ag; Pd; Pt; Au

    Этот ряд характеризует окислительно-восстановительную способность системы «металл – ион металла» в водных растворах при стандартных условиях. Чем левее в ряду напряжений стоит металл (чем меньше его j 0 ), тем более сильным восстановителем он является, и тем легче атомы металла отдают электроны, превращаясь в катионы, но катионы этого металла труднее присоединяют электроны, превращаясь в нейтральные атомы.

    Окислительно-восстановительные реакции с участием металлов и их катионов идут в том направлении, при котором металл с меньшим электродным потенциалом является восстановителем (т.е. окисляется), а катионы металла с большим электродным потенциалом – окислителями (т.е. восстанавливаются). В связи с этим для электрохимического ряда напряжений металлов характерны следующие закономерности:

    1. каждый металл вытесняет из раствора солей все другие металлы, стоящие правее его в электрохимическом ряду напряжений металлов.

    2. все металлы, которые в электрохимическом ряду напряжений стоят левее водорода, вытесняют водород из разбавленных кислот.

    Методика проведения опытов

    Опыт 1: Взаимодействие металлов с соляной кислотой.

    В четыре пробирки налить по 2 – 3 мл соляной кислоты и поместить в них по кусочку алюминия, цинка, железа и меди порознь. Какие из взятых металлов вытесняют водород из кислоты? Написать уравнения реакций.

    Опыт 2: Взаимодействие металлов с серной кислотой.

    В пробирку опустить кусочек железа и добавить 1 мл 2н. серной кислоты. Что наблюдается? Повторить опыт с кусочком меди. Протекает ли реакция?

    Проверить действие концентрированной серной кислоты на железо и медь. Объяснить наблюдения. Написать все уравнения реакций.

    Опыт 3: Взаимодействие меди с азотной кислотой.

    Положить в две пробирки по кусочку меди. В одну из них налить 2 мл разбавленной азотной кислоты, во вторую – концентрированной. При необходимости содержимое пробирок подогреть на спиртовке. Какой газ образуется в первой пробирке, а какой во второй? Записать уравнения реакций.

    Опыт 4: Взаимодействие металлов с солями.

    Налить в пробирку 2 – 3 мл раствора сульфата меди (II) и опустить кусочек железной проволоки. Что происходит? Повторить опыт, заменив железную проволоку кусочком цинка. Написать уравнения реакций. Налить в пробирку 2 мл раствора ацетата или нитрата свинца (II) и опустить кусочек цинка. Что происходит? Написать уравнение реакции. Указать окислитель и восстановитель. Будет ли протекать реакция, если цинк заменить медью? Дать объяснение.

    11.3 Необходимый уровень подготовки студентов

    1. Знать понятие стандартного электродного потенциала, иметь представление о его измерении.

    2. Уметь использовать уравнение Нернста для определения электродного потенциала в условиях, отличных от стандартных.

    3. Знать, что такое ряд напряжений металлов, что он характеризует.

    4. Уметь использовать ряд напряжений металлов для определения направления окислительно-восстановительных реакций с участием металлов и их катионов, а также металлов и кислот.

    Задания для самоконтроля

    1. Какая масса технического железа, содержащего 18% примесей, требуется для вытеснения из раствора сульфата никеля (II) 7,42 г никеля?

    2. В раствор нитрата серебра опущена медная пластинка массой 28 г . по окончании реакции пластинка была вынута, обмыта, высушена и взвешена. Масса ее оказалась 32,52 г . Какая масса нитрата серебра была в растворе?

    3. Определите значение электродного потенциала меди, погруженной в 0,0005 М раствор нитрата меди (II) .

    4. Электродный потенциал цинка, погруженного в 0,2 М раствор ZnSO 4 , равен 0,8 В . определите кажущуюся степень диссоциации ZnSO 4 в растворе указанной концентрации.

    5. Вычислите потенциал водородного электрода, если концентрация ионов водорода в растворе (Н +) составляет 3,8 10 -3 моль/л.

    6. Вычислите потенциал железного электрода, опущенного в раствор, содержащий 0,0699 г FeCI 2 в 0,5 л.

    7. Что называют стандартным электродным потенциалом металла? Каким уравнением выражается зависимость электродных потенциалов от концентрации?

    Лабораторная работа № 12

    Тема:Гальванический элемент

    Цель работы: ознакомление на опыте с принципами работы гальванического элемента, овладение методикой расчета ЭДС гальванических элементов.

    Оборудование и реактивы: медная и цинковая пластины, присоединенные к проводникам, медная и цинковая пластины, соединенные проводниками с медными пластинами, наждачная бумага, вольтметр, 3 химических стакана на 200-250 мл , мерный цилиндр, штатив с закрепленной в нем U - образной трубкой, солевой мост, 0,1 М растворы сульфата меди, сульфата цинка, сульфата натрия, 0,1 % раствор фенолфталеина в 50% этиловом спирте.

    Теоретические пояснения

    Гальванический элемент – это химический источник тока, то есть устройство, вырабатывающее электрическую энергию в результате прямого преобразования химической энергии окислительно-восстановительной реакции.

    Электрический ток (направленное движение заряженных частиц) передается по проводникам тока, которые подразделяются на проводники первого и второго рода.

    Проводники первого рода проводят электрический ток своими электронами (электронные проводники). К ним относятся все металлы и их сплавы, графит, уголь, а также некоторые твердые оксиды. Удельная электропроводность этих проводников находится в пределах от 10 2 до 10 6 Ом -1 см -1 (например, уголь – 200 Ом -1 см -1 , серебро 6 10 5 Ом -1 см -1 ).

    Проводники второго рода проводят электрический ток своими ионами (ионные проводники). Они характеризуются низкой электропроводностью (например, Н 2 О – 4 10 -8 Ом -1 см -1 ).

    При сочетании проводников первого и второго рода образуется электрод. Это чаще всего металл, опущенный в раствор собственной соли.

    При погружении металлической пластинки в воду атомы металла, находящиеся в его поверхностном слое, под действием полярных молекул воды гидратируются. В результате гидратации и теплового движения связь их с кристаллической решеткой ослабляется и некоторое количество атомов, переходит в виде гидратированных ионов в слой жидкости, прилегающий к поверхности металла. Металлическая пластинка заряжается при этом отрицательно:

    Ме + m Н 2 О = Ме n + n Н 2 О + ne -

    Где Ме – атом металла; Ме n + n Н 2 О – гидратированный ион металла; e - – электрон, n – заряд иона металла.

    Состояние равновесия зависит от активности металла и от концентрации его ионов в растворе. В случае активных металлов (Zn, Fe, Cd, Ni ) взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратированных ионов в раствор (рис. 1а ). Этот процесс является окислительным. По мере увеличения концентрации катионов у поверхности возрастает скорость обратного процесса – восстановления ионов металла. В конечном итоге скорости обоих процессов выравниваются, устанавливается равновесие, при котором на границе раствор-металл возникает двойной электрический слой с определенным значением потенциала металла.

    + + + +
    – – – –

    Zn 0 + mH 2 O → Zn 2+ mH 2 O+2e - + + – – Cu 2+ nH 2 O+2e - → Cu 0 + nH 2 O

    + + + – – –


    Рис. 1. Схема возникновения электродного потенциала

    При погружении металла не в воду, а в раствор соли этого металла равновесие смещается влево, то есть в сторону перехода ионов из раствора на поверхность металла. При этом устанавливается новое равновесие уже при другом значении потенциала металла.

    Для неактивных металлов равновесная концентрация ионов металла в чистой воде очень мала. Если такой металл погрузить в раствор его соли, то катионы металла будут выделяться из раствора с большей скоростью, чем скорость перехода ионов из металла в раствор. В этом случае поверхность металла получит положительный заряд, а раствор – отрицательный из-за избытка анионов соли (рис. 1. б ).

    Таким образом, при погружении металла в воду или в раствор, содержащий ионы данного металла, на поверхности раздела фаз металл-раствор образуется двойной электрический слой, обладающий определенной разностью потенциалов. Потенциал электрода зависит от природы металла, концентрации его ионов в растворе и температуры.

    Абсолютное значение электродного потенциала j отдельного электрода экспериментально определить нельзя. Однако можно измерить разность потенциалов двух химически различных электродов.

    Условились принимать потенциал стандартного водородного электрода равным нулю. Стандартный водородный электрод представляет собой платиновую пластинку, покрытую губчатой платиной, погруженную в раствор кислоты с активностью ионов водорода, равной 1 моль/л. Электрод омывается газообразным водородом при давлении 1 атм. и температуре 298 К. При этом устанавливается равновесие:

    2 Н + + 2 е = Н 2

    За стандартный потенциал j 0 данного металлического электрода принимается ЭДС гальванического элемента, составленного из стандартного водородного электрода и пластинки металла, помещенной в раствор соли этого металла, причем активность (в разбавленных растворах можно использовать концентрацию) катионов металла в растворе должна быть равна 1 моль/л; Т=298 К; р=1 атм. (стандартные условия). Значение стандартного электродного потенциала всегда относят к полуреакции восстановления:

    Me n + +n e - → Me

    Располагая металлы в порядке возрастания величины их стандартных электродных потенциалов j 0 , отвечающих полуреакции восстановления, получают ряд напряжений металлов (ряд стандартных электродных потенциалов). В этот же ряд помещают стандартный электродный потенциал системы, принимаемый за нуль:

    Н + +2е - → Н 2

    Зависимость электродного потенциала металла j от температуры и концентрации (активности) определяется уравнением Нернста, которое применительно к системе:

    Me n + + n e - Me

    Можно записать в следующем виде:

    где - стандартный электродный потенциал, В ;

    R – газовая постоянная, ;

    F – постоянная Фарадея (»96500 Кл/моль );

    n – число электронов, участвующих в процессе;

    а Ме n + - активность ионов металла в растворе, моль/л .

    Принимая значение Т =298К, получим

    причем активность в разбавленных растворах можно заменить концентрацией ионов, выраженной в моль/л.

    ЭДС любого гальванического элемента можно определить как разность электродных потенциалов катода и анода:

    ЭДС = j катода -j анода

    Отрицательный полюс элемента называют анодом, на нем идет процесс окисления:

    Ме - ne - → Me n +

    Положительный полюс называют катодом, на нем идет процесс восстановления:

    Me n + + ne - → Ме

    Гальванический элемент можно записать схематично, при этом соблюдаются определенные правила:

    1. Электрод слева должен быть записан в последовательности металл – ион. Электрод справа записывается в последовательности ион – металл. (-) Zn/Zn 2+ //Cu 2+ /Cu (+)

    2. Реакция, протекающая на левом электроде, записывается как окислительная, а реакция на правом электроде – как восстановительная.

    3. Если ЭДС элемента > 0, то работа гальванического элемента будет самопроизвольна. Если ЭДС < 0, то самопроизвольно будет работать обратный гальванический элемент.

    Методика проведения опыта

    Опыт 1 : Составление медно-цинкового гальванического элемента

    Получите у лаборанта необходимое оборудование и реактивы. В химический стакан объемом 200 мл налейте 100 мл 0,1 М раствора сульфата меди (II) и опустите в него медную пластинку, соединенную с проводником. Во второй стакан налейте такой же объем 0,1 М раствора сульфата цинка и опустите в него цинковую пластину, соединенную с проводником. Пластины должны быть предварительно зачищены наждачной бумагой. Получите у лаборанта солевой мост и соедините им два электролита. Солевой мост представляет собой наполненную гелем (агар-агаром) стеклянную трубку, оба конца которой закрыты ватным тампоном. Мост выдерживают в насыщенном водном растворе сульфата натрия, в результате чего происходит набухание геля, у него проявляется ионная проводимость.

    С помощью преподавателя присоедините вольтметр к полюсам образовавшегося гальванического элемента и измерьте напряжение (если измерение проводить вольтметром с небольшим сопротивлением, то разница между величиной ЭДС и напряжения невелика). Используя уравнение Нернста, рассчитайте теоретическое значение ЭДС гальванического элемента. Напряжение меньше ЭДС гальванического элемента из-за поляризации электродов и омических потерь.

    Опыт 2 : Электролиз раствора сульфата натрия

    В опыте за счет электрической энергии, вырабатываемой гальваническим элементом, предлагается провести электролиз сульфата натрия. Для этого в U - образную трубку налейте раствор сульфата натрия и в оба колена ее поместите медные пластины, зачищенные наждачной бумагой и соединенные с медным и цинковым электродами гальванического элемента, как это показано на рис. 2. В каждое колено U-образной трубки прибавьте по 2-3 капли фенолфталеина. Спустя некоторое время в катодном пространстве электролизера наблюдается окрашивание раствора в розовый цвет за счет образования щелочи при катодном восстановлении воды. Это свидетельствует о том, что гальванический элемент работает как источник тока.

    Составьте уравнения процессов, протекающих на катоде и на аноде при электролизе водного раствора сульфата натрия.


    (–) КАТОД АНОД (+)


    солевой мост

    Zn 2+ Cu 2+

    ZnSO 4 Cu SO 4

    АНОД (-) КАТОД (+)

    Zn – 2e - → Zn 2+ Сu 2+ + 2e - →Cu

    окисление восстановление

    12.3 Необходимый уровень подготовки студентов

    1. Знать понятия: проводники первого и второго рода, диэлектрики, электрод, гальванический элемент, анод и катод гальванического элемента, электродный потенциал, стандартный электродный потенциал. ЭДС гальванического элемента.

    2. Иметь представления о причинах возникновения электродных потенциалов и методах их измерения.

    3. Иметь представления о принципах работы гальванического элемента.

    4. Уметь использовать уравнение Нернста для расчета электродных потенциалов.

    5. Уметь записывать схемы гальванических элементов, уметь вычислять ЭДС гальванических элементов.

    Задания для самоконтроля

    1. Охарактеризуйте проводники и диэлектрики.

    2. Почему в гальваническом элементе анод имеет отрицательный заряд, а в электролизере положительный?

    3. В чем различие и сходство катодов в электролизере и гальваническом элементе?

    4. Магниевую пластинку опустили в раствор ее соли. При этом электродный потенциал магния оказался равен -2,41 В . Вычислите концентрацию ионов магния в моль/л. (4,17х10 -2).

    5. При какой концентрации ионов Zn 2+ (моль/л) потенциал цинкового электрода станет на 0,015 В меньше его стандартного электродного? (0,3 моль/л)

    6. Никелевый и кобальтовый электроды опущены соответственно в растворы Ni(NO 3) 2 и Co(NO 3) 2 . В каком соотношении должна быть концентрация ионов этих металлов, чтобы потенциалы обоих электродов были одинаковы? (C Ni 2+ :C Co 2+ = 1:0,117).

    7. При какой концентрации ионов Cu 2+ в моль/л значение потенциала медного электрода становится равным стандартному потенциалу водородного электрода? (1,89x 10 -6 моль/л).

    8. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента состоящего из пластин кадмия и магния, опущенных в растворы своих солей с концентрацией = = 1.0 моль/л. Изменится ли величина ЭДС , если концентрацию каждого из ионов понизить до 0,01 моль/л ? (2,244 В ).

    Лабораторная работа №13

    Разделы: Химия , Конкурс «Презентация к уроку»

    Класс: 11

    Презентация к уроку



















    Назад Вперёд

    Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

    Цели и задачи:

    • Обучающая: Рассмотрение химической активности металлов исходя из положения в периодической таблице Д.И. Менделеева и в электрохимическом ряду напряжения металлов.
    • Развивающая: Способствовать развитию слуховой памяти, умению сопоставлять информацию, логически мыслить и объяснять происходящие химические реакции.
    • Воспитательная: Формируем навык самостоятельной работы, умение аргументировано высказывать свое мнение и выслушивать одноклассников, воспитываем в ребятах чувство патриотизма и гордость за соотечественников.

    Оборудование: ПК с медиапроектором, индивидуальные лаборатории с набором химических реактивов, модели кристаллических решеток металлов.

    Тип урока : с применением технологии развития критического мышления.

    Ход урока

    I. Стадия вызов.

    Актуализация знаний по теме, пробуждение познавательной активности.

    Блеф-игра: «Верите ли Вы, что…». (Слайд 3)

    1. Металлы занимают верхний левый угол в ПСХЭ.
    2. В кристаллах атомы металла связаны металлической связью.
    3. Валентные электроны металлов крепко связаны с ядром.
    4. У металлов, стоящих в главных подгруппах (А), на внешнем уровне обычно 2 электрона.
    5. В группе сверху вниз происходит увеличение восстановительных свойств металлов.
    6. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в электрохимический ряд напряжения металлов.
    7. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в периодическую таблицу Д.И. Менделеева

    Вопрос классу? Что обозначает запись? Ме 0 – ne —> Me +n (Слайд 4)

    Ответ: Ме0 – является восстановителем, значит вступает во взаимодействие с окислителями. В качестве окислителей могут выступать:

    1. Простые вещества (+О 2 , Сl 2 , S…)
    2. Сложные вещества (Н 2 О, кислоты, растворы солей…)

    II. Осмысление новой информации.

    В качестве методического приема предлагается составление опорной схемы.

    Вопрос классу? От каких факторов зависят восстановительные свойства металлов? (Слайд 5)

    Ответ: От положения в периодической таблице Д.И.Менделеева или от положения в электрохимическом ряду напряжения металлов.

    Учитель вводит понятия: химическая активность и электрохимическая активность .

    Пред началом объяснения ребятам предлагается сравнить активность атомов К и Li поположению в периодической таблице Д.И. Менделеева и активность простых веществ, образованными данными элементами по положению в электрохимическом ряду напряжения металлов. (Слайд 6)

    Возникает противоречие: В соответствии с положением щелочных металлов в ПСХЭ и согласно закономерностям изменения свойств элементов в подгруппе активность калия больше, чем лития. По положению в ряду напряжения наиболее активным является литий.

    Новый материал. Учитель объясняет в чем отличие химической от электрохимической активности и объясняет, что электрохимический ряд напряжений отражает способность металла переходить в гидратированный ион, где мерой активности металла является энергия, которая складывается из трех слагаемых (энергии атомизации, энергии ионизации и энергии гидротации). Материал записываем в тетрадь. (Слайды 7-10)

    Вместе записываем в тетрадь вывод: Чем меньше радиус иона, тем большее электрическое поле вокруг него создается, тем больше энергии выделяется при гидротации, следовательно более сильные восстановительные свойства у этого металла в реакциях.

    Историческая справка: выступление ученика о создании Бекетовым вытеснительного ряда металлов. (Слайд 11)

    Действие электрохимического ряда напряжения металлов ограничивается только реакциями металлов с растворами электролитов (кислот, солей).

    Памятка:

    1. Уменьшаются восстановительные свойства металлов при реакциях в водных растворах в стандартных условиях (250°С, 1 атм.);
    2. Металл, стоящий левее, вытесняет металл, стоящий правее из их солей в растворе;
    3. Металлы, стоящие до водорода, вытесняют его из кислот в растворе (искл.: HNO3);
    4. Ме (до Al) + Н 2 О —> щелочь + Н 2
      Другие Ме (до Н 2) + Н 2 О —> оксид + Н 2 (жесткие условия)
      Ме (после Н 2) + Н 2 О —> не реагируют

    (Слайд 12)

    Ребятам раздаются памятки.

    Практическая работа: «Взаимодействие металлов с растворами солей» (Слайд 13)

    Осуществите переход:

    • CuSO 4 —> FeSO 4
    • CuSO 4 —> ZnSO 4

    Демонстрация опыта взаимодействия меди и раствора нитрата ртути (II).

    III. Рефлексия, размышление.

    Повторяем: в каком случае пользуемся таблицей Менделеева, а в каком случае необходим ряд напряжение металлов. (Слайды 14-15) .

    Возвращаемся к начальным вопросам урока. На экране высвечиваем вопрос 6 и 7. Анализируем какое высказывание не верное. На экране – ключ (проверка задания 1). (Слайд 16) .

    Подводим итоги урока :

    • Что нового узнали?
    • В каком случае возможно пользоваться электрохимическим рядом напряжения металлов?

    Домашнее задание : (Слайд 17)

    1. Повторить из курса физики понятие «ПОТЕНЦИАЛ»;
    2. Закончить уравнение реакции, написать уравнения электронного баланса: Сu + Hg(NO 3) 2 →
    3. Даны металлы (Fe, Mg, Pb, Cu) – предложите опыты, подтверждающие расположение данных металлов в электрохимическом ряду напряжения.

    Оцениваем результаты за блеф-игру, работу у доски, устные ответы, сообщение, практическую работу.

    Используемая литература:

    1. О.С. Габриэлян, Г.Г. Лысова, А.Г. Введенская «Настольная книга для учителя. Химия 11 класс, часть II» Издательство Дрофа.
    2. Н.Л. Глинка «Общая химия».
    металлов

    В многих химических реакциях участвуют простые вещества, в частности металлы. Однако разные металлы проявляют разную активность в химических взаимодействиях, и от этого зависит, будет протекать реакция или нет.

    Чем большая активность металла, тем энергичнее он реагирует с другими веществами. По активностью все металлы можно расположить в ряд, который называют рядом активности металлов, или вытеснительный ряд металлов, или рядом напряжений металлов, а также электрохимическим рядом напряжений металлов. Этот ряд впервые исследовал выдающийся украинский ученый М. М. Бекетов, поэтому этот ряд называют также рядом Бекетова.

    Ряд активности металлов Бекетова имеет такой вид (приведены наиболее употребительные металлы):

    К > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > >H 2 > Cu > Hg > Ag > Au.

    В этом ряду металлы расположены с уменьшением их активности. Среди приведенных металлов наиболее активный калий, а наименее активный - золото. С помощью этого ряда можно определить, какой металл активнее от другого. Также в этом ряде присутствует водород. Конечно же, водород не является металлом, но в этом ряду его активность принята за точку отсчета (своеобразный ноль).

    Взаимодействие металлов с водой

    Металлы способны вытеснять водород не только из растворов кислот, но и из воды. Так же, как и с кислотами, активность взаимодействия металлов с водой увеличивается слева направо.

    Металлы, стоящие в ряду активности до магния, способны реагировать с водой при обычных условий. При взаимодействии этих металлов образуются щелочи и водород, например:

    Другие металлы, стоящие до водорода в ряду активностей, также могут взаимодействовать с водой, но это происходит в более жестких условиях. Для взаимодействия через раскаленные металлические опилки пропускают перегретый водяной пар. В таких условиях гидроксиды уже существовать не могут, поэтому продуктами реакции являются оксид соответствующего металлического элемента и водород:

    Зависимость химических свойств металлов от места в ряду активности

    активность металлов увеличивается

    Вытесняют водород из кислот

    Не вытесняют водород из кислот

    Вытесняют водород из воды, образуют щелочи

    Вытесняют водород из воды при высокой температуре, образуют оксиды

    3 водой не взаимодействуют

    С водного раствора соли вытеснить невозможно

    Можно получить вытеснением более активным металлом из раствора соли или из расплава оксида

    Взаимодействие металлов с солями

    Если соль растворима в воде, то атом металлического элемента в ней может быть замещен атомом более активного элемента. Если погрузить в раствор купрум(ІІ) сульфата железную пластинку, то через некоторое время на ней выделится медь в виде красного налета:

    Но если в раствор купрум(ІІ) сульфата погрузить серебряную пластину, то никакой реакции происходить не будет:

    Купрум можно вытеснить любым металлом, который стоит левее в ряду активности металлов. Однако металлы, которые стоят в самом начале ряда,- натрий, калий и т.д. - для этого не пригодны, потому что они настолько активны, что будут взаимодействовать не с солью, а с водой, в которой эта соль растворена.

    Вытеснение металлов из солей более активными металлами очень широко используют в промышленности для извлечения металлов.

    Взаимодействие металлов с оксидами

    Окислы металлических элементов способны взаимодействовать с металлами. Более активные металлы вытесняют менее активные из оксидов:

    Но, в отличие от взаимодействия металлов с солями, в этом случае оксиды необходимо расплавить, чтобы реакция произошла. Для добыча металла из оксида можно использовать любой металл, что расположен в ряду активности левее, даже наиболее активный натрий и калий, ведь в расплавленном оксиде вода не содержится.

    Взаимодействие металлов с оксидами используют в промышленности для извлечения других металлов. Наиболее практичный для этого метода металл - алюминий. Он достаточно широко распространен в природе и дешевый в производстве. Можно также использовать и более активные металлы (кальций, натрий, калий), но они, во-первых, дороже алюминия, а во-вторых, через сверхвысокую химическую активность их очень сложно сохранять на заводах. Такой способ извлечения металлов с использованием алюминия называют алюмінотермією.