Дадено е доказателство на производната формула сложна функция. Подробно са разгледани случаите, когато сложна функция зависи от една или две променливи. Направено е обобщение за случай на произволен брой променливи.

Съдържание

Вижте също: Примери за използване на формулата за производна на сложна функция

Основни формули

Тук предоставяме извеждането на следните формули за производната на сложна функция.
Ако , тогава
.
Ако , тогава
.
Ако , тогава
.

Производна на сложна функция от една променлива

Нека функция на променлива x бъде представена като сложна функция в следната форма:
,
където има някои функции. Функцията е диференцируема за някаква стойност на променливата x. Функцията е диференцируема по стойността на променливата.
Тогава комплексната (съставната) функция е диференцируема в точка x и нейната производна се определя по формулата:
(1) .

Формула (1) може да бъде записана и по следния начин:
;
.

Доказателство

Нека въведем следната нотация.
;
.
Тук има функция на променливите и , има функция на променливите и . Но ще пропуснем аргументите на тези функции, за да не затрупваме изчисленията.

Тъй като функциите и са диференцируеми в точки x и съответно, тогава в тези точки има производни на тези функции, които са следните граници:
;
.

Помислете за следната функция:
.
За фиксирана стойност на променливата u е функция на . Очевидно е, че
.
Тогава
.

Тъй като функцията е диференцируема функция в точката, тя е непрекъсната в тази точка. Ето защо
.
Тогава
.

Сега намираме производната.

.

Формулата е доказана.

Последица

Ако функция на променлива x може да бъде представена като сложна функция на сложна функция
,
тогава неговата производна се определя от формулата
.
Тук и има някои диференцируеми функции.

За да докажем тази формула, ние последователно изчисляваме производната, използвайки правилото за диференциране на сложна функция.
Разгледайте сложната функция
.
Негова производна
.
Помислете за оригиналната функция
.
Негова производна
.

Производна на сложна функция от две променливи

Сега нека сложната функция зависи от няколко променливи. Първо нека да разгледаме случай на сложна функция на две променливи.

Нека функция, зависеща от променливата x, бъде представена като сложна функция на две променливи в следната форма:
,
Където
и има диференцируеми функции за някаква стойност на променливата x;
- функция на две променливи, диференцируема в точка , . Тогава комплексната функция е дефинирана в определена околност на точката и има производна, която се определя по формулата:
(2) .

Доказателство

Тъй като функциите и са диференцируеми в точката, те са дефинирани в определена околност на тази точка, непрекъснати са в точката и техните производни съществуват в точката, които са следните граници:
;
.
Тук
;
.
Поради непрекъснатостта на тези функции в даден момент имаме:
;
.

Тъй като функцията е диференцируема в точката, тя е дефинирана в определена околност на тази точка, непрекъсната е в тази точка и нейното нарастване може да се запише в следната форма:
(3) .
Тук

- увеличаване на функция, когато нейните аргументи се увеличават със стойности и ;
;

- частни производни на функцията по отношение на променливите и .
За фиксирани стойности на и и са функции на променливите и . Те клонят към нула при и:
;
.
Тъй като и , тогава
;
.

Увеличаване на функцията:

. :
.
Нека заместим (3):



.

Формулата е доказана.

Производна на сложна функция от няколко променливи

Горното заключение може лесно да се обобщи за случая, когато броят на променливите на сложна функция е повече от две.

Например, ако f е функция на три променливи, Че
,
Където
, и има диференцируеми функции за някаква стойност на променливата x;
- диференцируема функция на три променливи в точка , , .
Тогава от определението за диференцируемост на функцията имаме:
(4)
.
Защото поради приемствеността,
; ; ,
Че
;
;
.

Разделяйки (4) на и преминавайки към границата, получаваме:
.

И накрая, нека помислим най-общия случай.
Нека функция на променлива x бъде представена като сложна функция на n променливи в следната форма:
,
Където
има диференцируеми функции за някаква стойност на променливата x;
- диференцируема функция на n променливи в точка
, , ... , .
Тогава
.

Вижте също:

Реши физически задачиили примери в математиката е напълно невъзможно без познаване на производната и методите за нейното изчисляване. Производното е едно от най-важните понятия математически анализ. Решихме да посветим днешната статия на тази основна тема. Какво е производна, какво е нейното физично и геометрично значение, как се изчислява производната на функция? Всички тези въпроси могат да бъдат комбинирани в един: как да разберем производната?

Геометрично и физическо значение на производната

Нека има функция f(x) , посочени в определен интервал (а, б) . Точките x и x0 принадлежат на този интервал. Когато x се промени, самата функция се променя. Промяна на аргумента - разликата в стойностите му х-х0 . Тази разлика се записва като делта х и се нарича увеличение на аргумента. Промяна или увеличение на функция е разликата между стойностите на функция в две точки. Дефиниция на производна:

Производната на функция в точка е границата на отношението на нарастването на функцията в дадена точка към нарастването на аргумента, когато последният клони към нула.

Иначе може да се напише така:

Какъв е смисълът да се намери такава граница? И ето какво е:

производната на функция в точка е равна на тангенса на ъгъла между оста OX и допирателната към графиката на функцията в дадена точка.


Физическо значение на производната: производната на пътя по време е равна на скоростта на праволинейно движение.

Всъщност още от ученическите дни всеки знае, че скоростта е особен път x=f(t) и време T . Средната скоростза определен период от време:

За да разберете скоростта на движение в даден момент t0 трябва да изчислите лимита:

Правило едно: задайте константа

Константата може да бъде извадена от знака за производна. Освен това това трябва да се направи. Когато решавате примери по математика, вземете го за правило - Ако можете да опростите израз, не забравяйте да го опростите .

Пример. Нека изчислим производната:

Второ правило: производна на сумата от функции

Производната на сумата от две функции е равна на сумата от производните на тези функции. Същото важи и за производната на разликата на функциите.

Няма да даваме доказателство на тази теорема, а по-скоро ще разгледаме практически пример.

Намерете производната на функцията:

Трето правило: производна на произведението на функциите

Производната на произведението на две диференцируеми функции се изчислява по формулата:

Пример: намерете производната на функция:

Решение:

Тук е важно да говорим за изчисляване на производни на сложни функции. Производната на сложна функция е равна на произведението на производната на тази функция по отношение на междинния аргумент и производната на междинния аргумент по отношение на независимата променлива.

В горния пример срещаме израза:

В този случай междинният аргумент е 8x на пета степен. За да изчислим производната на такъв израз, първо изчисляваме производната на външната функция по отношение на междинния аргумент и след това я умножаваме по производната на самия междинен аргумент по отношение на независимата променлива.

Четвърто правило: производна на частното на две функции

Формула за определяне на производната на частното на две функции:

Опитахме се да говорим за производни за манекени от нулата. Тази тема не е толкова проста, колкото изглежда, така че бъдете предупредени: в примерите често има клопки, така че бъдете внимателни, когато изчислявате производни.

С всякакви въпроси по тази и други теми можете да се свържете със студентската служба. Отзад краткосроченНие ще ви помогнем да решите най-трудните тестове и задачи, дори ако никога преди не сте правили производни изчисления.

В „старите“ учебници се нарича още „верижно“ правило. Така че, ако y = f (u) и u = φ (x), това е

y = f (φ (x))

    комплексно - съставна функция (композиция от функции) тогава

Където , след изчисление се разглежда при u = φ (x).



Имайте предвид, че тук взехме „различни“ композиции от едни и същи функции и резултатът от диференциацията естествено се оказа, че зависи от реда на „смесване“.

Верижното правило естествено се разпростира до композиции от три или повече функции. В този случай ще има три или повече „връзки“ във „веригата“, която съставлява производното. Ето една аналогия с умножението: „имаме“ таблица с производни; “там” - таблица за умножение; „при нас“ е верижното правило, а „там“ е правилото за умножение в „колона“. При изчисляването на такива „сложни“ производни, разбира се, не се въвеждат спомагателни аргументи (u¸v и т.н.), но след като са отбелязали за себе си броя и последователността на функциите, участващи в състава, съответните връзки са „нанизани“ по посочения ред.

. Тук с “x” за получаване на стойността на “y” се извършват пет операции, тоест има композиция от пет функции: “външна” (последната от тях) - експоненциална - e  ; след това в обратен ред, мощност. (♦) 2; тригонометричен sin(); успокоен. () 3 и накрая логаритмичен ln.(). Ето защо

Със следните примери ще „убиваме двойки птици с един камък“: ще практикуваме диференциране на сложни функции и ще добавяме към таблицата с производни елементарни функции. Така:

4. За степенна функция - y = x α - пренаписвайки я с помощта на добре познатата „основна логаритмична идентичност“ - b=e ln b - във формата x α = x α ln x получаваме

5. За произволна експоненциална функция, използвайки същата техника, която ще имаме

6. Безплатно логаритмична функцияИзползвайки добре познатата формула за преместване в нова база, ние последователно получаваме

.

7. За диференциране на тангенса (котангенса) използваме правилото за диференциране на коефициентите:

За да получим производните на обратни тригонометрични функции, ние използваме връзката, която е изпълнена от производните на две взаимно обратни функции, тоест функциите φ (x) и f (x), свързани с отношенията:

Това е съотношението

Тя е от тази формула за взаимно обратни функции

И
,

И накрая, нека обобщим тези и някои други производни, които също лесно се получават в следващата таблица.

Ако следвате дефиницията, тогава производната на функция в точка е границата на съотношението на нарастването на функцията Δ гкъм увеличението на аргумента Δ х:

Всичко изглежда ясно. Но опитайте да използвате тази формула, за да изчислите, да речем, производната на функцията f(х) = х 2 + (2х+ 3) · д хгрях х. Ако правите всичко по дефиниция, тогава след няколко страници изчисления просто ще заспите. Следователно има по-прости и по-ефективни начини.

Като начало отбелязваме, че от цялото разнообразие от функции можем да различим така наречените елементарни функции. Това са относително прости изрази, чиито производни отдавна са изчислени и таблични. Такива функции са доста лесни за запомняне - заедно с техните производни.

Производни на елементарни функции

Елементарни функции са всички изброени по-долу. Производните на тези функции трябва да се знаят наизуст. Освен това не е никак трудно да ги запомните - затова са елементарни.

И така, производни на елементарни функции:

Име функция Производна
Константа f(х) = ° С, ° СР 0 (да, нула!)
Степен с рационален показател f(х) = х н н · х н − 1
синусите f(х) = грях х cos х
Косинус f(х) = cos х − грях х(минус синус)
Допирателна f(х) = tg х 1/cos 2 х
Котангенс f(х) = ctg х − 1/грех 2 х
Натурален логаритъм f(х) = дневник х 1/х
Произволен логаритъм f(х) = дневник а х 1/(хвътре а)
Експоненциална функция f(х) = д х д х(Нищо не се промени)

Ако една елементарна функция се умножи по произволна константа, тогава производната на новата функция също се изчислява лесно:

(° С · f)’ = ° С · f ’.

По принцип константите могат да бъдат извадени от знака на производната. Например:

(2х 3)’ = 2 · ( х 3)’ = 2 3 х 2 = 6х 2 .

Очевидно елементарните функции могат да се добавят една към друга, умножават, разделят - и много повече. Така ще се появят нови функции, вече не особено елементарни, но и диференцирани по определени правила. Тези правила са обсъдени по-долу.

Производна на сбор и разлика

Нека функциите са дадени f(х) И ж(х), чиито производни са ни известни. Например можете да вземете елементарните функции, обсъдени по-горе. След това можете да намерите производната на сбора и разликата на тези функции:

  1. (f + ж)’ = f ’ + ж
  2. (fж)’ = f ’ − ж

И така, производната на сумата (разликата) на две функции е равна на сумата (разликата) на производните. Възможно е да има повече термини. Например, ( f + ж + ч)’ = f ’ + ж ’ + ч ’.

Строго погледнато, в алгебрата няма концепция за „изваждане“. Съществува понятието „отрицателен елемент“. Следователно разликата fжможе да се пренапише като сума f+ (−1) ж, и тогава остава само една формула - производната на сумата.

f(х) = х 2 + sin x; ж(х) = х 4 + 2х 2 − 3.

функция f(х) е сумата от две елементарни функции, следователно:

f ’(х) = (х 2 + грях х)’ = (х 2)’ + (грех х)’ = 2х+ cos x;

Разсъждаваме по подобен начин за функцията ж(х). Само че вече има три термина (от гледна точка на алгебрата):

ж ’(х) = (х 4 + 2х 2 − 3)’ = (х 4 + 2х 2 + (−3))’ = (х 4)’ + (2х 2)’ + (−3)’ = 4х 3 + 4х + 0 = 4х · ( х 2 + 1).

Отговор:
f ’(х) = 2х+ cos x;
ж ’(х) = 4х · ( х 2 + 1).

Производно на продукта

Математиката е логическа наука, така че много хора вярват, че ако производната на дадена сума е равна на сумата от производните, тогава производната на произведението стачка">равно на произведението на производните. Но майната ви! Производната на продукт се изчислява по съвсем различна формула. А именно:

(f · ж) ’ = f ’ · ж + f · ж

Формулата е проста, но често се забравя. И не само ученици, но и студенти. Резултатът е неправилно решени задачи.

Задача. Намерете производни на функции: f(х) = х 3 cos x; ж(х) = (х 2 + 7х− 7) · д х .

функция f(х) е продукт на две елементарни функции, така че всичко е просто:

f ’(х) = (х 3 cos х)’ = (х 3)’ cos х + х 3 (cos х)’ = 3х 2 cos х + х 3 (− грях х) = х 2 (3 cos ххгрях х)

функция ж(х) първият фактор е малко по-сложен, но обща схематова не се променя. Очевидно първият фактор на функцията ж(х) е полином и неговата производна е производната на сумата. Ние имаме:

ж ’(х) = ((х 2 + 7х− 7) · д х)’ = (х 2 + 7х− 7)’ · д х + (х 2 + 7х− 7) · ( д х)’ = (2х+ 7) · д х + (х 2 + 7х− 7) · д х = д х· (2 х + 7 + х 2 + 7х −7) = (х 2 + 9х) · д х = х(х+ 9) · д х .

Отговор:
f ’(х) = х 2 (3 cos ххгрях х);
ж ’(х) = х(х+ 9) · д х .

Моля, обърнете внимание, че в последната стъпка производната се факторизира. Формално това не е необходимо да се прави, но повечето производни не се изчисляват самостоятелно, а за изследване на функцията. Това означава, че по-нататък производната ще бъде приравнена на нула, нейните знаци ще бъдат определени и т.н. За такъв случай е по-добре да имате факторизиран израз.

Ако има две функции f(х) И ж(х), и ж(х) ≠ 0 на множеството, което ни интересува, можем да дефинираме нова функция ч(х) = f(х)/ж(х). За такава функция можете също да намерите производната:

Не е слаб, а? Откъде дойде минусът? Защо ж 2? И така! Това е една от най-сложните формули - не можете да я разберете без бутилка. Затова е по-добре да го изучавате на конкретни примери.

Задача. Намерете производни на функции:

Числителят и знаменателят на всяка дроб съдържат елементарни функции, така че всичко, от което се нуждаем, е формулата за производната на частното:


Според традицията, нека разложим числителя на множители - това значително ще опрости отговора:

Сложната функция не е непременно дълга половин километър формула. Например, достатъчно е да вземете функцията f(х) = грях хи заменете променливата х, да речем, на х 2 + ин х. Ще се получи f(х) = грях ( х 2 + ин х) - това е сложна функция. Той също има производно, но няма да е възможно да го намерите с помощта на обсъдените по-горе правила.

Какво трябва да направя? В такива случаи замяната на променлива и формула за производна на сложна функция помага:

f ’(х) = f ’(T) · T', Ако хсе заменя с T(х).

По правило ситуацията с разбирането на тази формула е още по-тъжна, отколкото с производната на коефициента. Затова е по-добре да го обясните с конкретни примери, с подробно описание на всяка стъпка.

Задача. Намерете производни на функции: f(х) = д 2х + 3 ; ж(х) = грях ( х 2 + ин х)

Имайте предвид, че ако във функцията f(х) вместо израз 2 х+ 3 ще бъде лесно х, тогава получаваме елементарна функция f(х) = д х. Затова правим замяна: нека 2 х + 3 = T, f(х) = f(T) = д T. Търсим производната на сложна функция по формулата:

f ’(х) = f ’(T) · T ’ = (д T)’ · T ’ = д T · T

А сега - внимание! Извършваме обратната замяна: T = 2х+ 3. Получаваме:

f ’(х) = д T · T ’ = д 2х+ 3 (2 х + 3)’ = д 2х+ 3 2 = 2 д 2х + 3

Сега нека да разгледаме функцията ж(х). Очевидно трябва да се смени х 2 + ин х = T. Ние имаме:

ж ’(х) = ж ’(T) · T’ = (грех T)’ · T’ = cos T · T

Обратна замяна: T = х 2 + ин х. Тогава:

ж ’(х) = cos ( х 2 + ин х) · ( х 2 + ин х)’ = cos ( х 2 + ин х) · (2 х + 1/х).

Това е всичко! Както се вижда от последния израз, цялата задача е сведена до изчисляване на производната сума.

Отговор:
f ’(х) = 2 · д 2х + 3 ;
ж ’(х) = (2х + 1/х) защото ( х 2 + ин х).

Много често в уроците си, вместо термина „производна“, използвам думата „просто“. Например прайм от сумата равно на суматаинсулти. Това по-ясно ли е? Е, това е добре.

По този начин изчисляването на производната се свежда до премахване на същите тези удари според правилата, обсъдени по-горе. Като последен пример, нека се върнем към производната степен с рационален показател:

(х н)’ = н · х н − 1

Малко хора знаят това в ролята нможе и да е дробно число. Например коренът е х 0,5. Ами ако има нещо фантастично под корена? Отново резултатът ще бъде сложна функция - те обичат да дават такива конструкции тестовеох и изпити.

Задача. Намерете производната на функцията:

Първо, нека пренапишем корена като степен с рационален показател:

f(х) = (х 2 + 8х − 7) 0,5 .

Сега правим замяна: нека х 2 + 8х − 7 = T. Намираме производната по формулата:

f ’(х) = f ’(T) · T ’ = (T 0,5)’ · T’ = 0,5 · T−0,5 · T ’.

Нека направим обратната замяна: T = х 2 + 8х− 7. Имаме:

f ’(х) = 0,5 · ( х 2 + 8х− 7) −0,5 · ( х 2 + 8х− 7)’ = 0,5 · (2 х+ 8) ( х 2 + 8х − 7) −0,5 .

И накрая, обратно към корените:

Комплексни производни. Логаритмична производна.
Производна на степенно-експоненциална функция

Продължаваме да подобряваме нашата техника за диференциране. В този урок ще консолидираме материала, който сме покрили, ще разгледаме по-сложни производни, а също така ще се запознаем с нови техники и трикове за намиране на производна, по-специално с логаритмичната производна.

Тези читатели, които имат ниско ниво на подготовка, трябва да се обърнат към статията Как да намерим производната? Примери за решения, което ще ви позволи да повишите уменията си почти от нулата. След това трябва внимателно да проучите страницата Производна на сложна функция, разберете и решете всичкопримерите, които дадох. Този урок логично е трети поред и след като го усвоите, вие уверено ще различавате доста сложни функции. Не е желателно да заемате позицията „Къде другаде? Стига!”, тъй като всички примери и решения са взети от реални тестове и често се срещат в практиката.

Да започнем с повторението. На урока Производна на сложна функцияРазгледахме няколко примера с подробни коментари. В хода на изучаване на диференциално смятане и други клонове на математическия анализ ще трябва да диференцирате много често и не винаги е удобно (и не винаги е необходимо) да описвате примери в големи подробности. Затова ще се упражняваме да намираме производни устно. Най-подходящите „кандидати“ за това са производни на най-простите от сложните функции, например:

Според правилото за диференциране на сложни функции :

При изучаване на други теми от матан в бъдеще най-често не се изисква такъв подробен запис; предполага се, че ученикът знае как да намира такива производни на автопилот. Нека си представим, че в 3 часа през нощта телефонът звънна и приятен глас попита: „Колко е производната на тангенса на две X?“ Това трябва да бъде последвано от почти мигновен и учтив отговор: .

Първият пример ще бъде незабавно предназначен за независимо решение.

Пример 1

Намерете устно следните производни, в едно действие, например: . За да изпълните задачата, трябва само да използвате таблица с производни на елементарни функции(ако още не сте го запомнили). Ако имате затруднения, препоръчвам ви да прочетете отново урока Производна на сложна функция.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Отговори в края на урока

Комплексни производни

След предварителна артилерийска подготовка, примерите с 3-4-5 влагане на функции ще бъдат по-малко страшни. Следващите два примера може да изглеждат сложни за някои, но ако ги разберете (някой ще пострада), тогава почти всичко останало в диференциалното смятане ще изглежда като детска шега.

Пример 2

Намерете производната на функция

Както вече беше отбелязано, при намиране на производната на сложна функция, на първо място, е необходимо вярноРАЗБЕРЕТЕ вашите инвестиции. В случаите, когато има съмнения, напомням ви за полезна техника: вземаме експерименталната стойност на „x“ например и се опитваме (психически или в чернова) да заменим дадена стойноств "ужасно изражение".

1) Първо трябва да изчислим израза, което означава, че сумата е най-дълбокото вграждане.

2) След това трябва да изчислите логаритъма:

4) След това кубирайте косинуса:

5) На петата стъпка разликата:

6) И накрая, най-външната функция е корен квадратен:

Формула за диференциране на сложна функция се прилагат в обратен ред, от най-външната функция към най-вътрешната. Ние решаваме:

Изглежда, че няма грешки...

(1) Вземете производната на корен квадратен.

(2) Вземаме производната на разликата, използвайки правилото

(3) Производната на тройка е нула. Във втория член вземаме производната на степента (куб).

(4) Вземете производната на косинуса.

(5) Вземете производната на логаритъма.

(6) И накрая, вземаме производната на най-дълбокото вграждане.

Може да изглежда твърде трудно, но това не е най-жестокият пример. Вземете например колекцията на Кузнецов и ще оцените цялата красота и простота на анализираната производна. Забелязах, че обичат да дават подобно нещо на изпит, за да проверят дали студентът разбира как се намира производната на сложна функция или не разбира.

Следващият пример трябва да решите сами.

Пример 3

Намерете производната на функция

Съвет: Първо прилагаме правилата за линейност и правилото за диференциране на продукта

Пълно решение и отговор в края на урока.

Време е да преминем към нещо по-малко и по-хубаво.
Не е необичайно примерът да показва произведението не на две, а на три функции. Как да намерим производната на произведението на три фактора?

Пример 4

Намерете производната на функция

Първо разглеждаме, възможно ли е да превърнем произведението на три функции в произведение на две функции? Например, ако имаме два полинома в произведението, тогава можем да отворим скобите. Но в разглеждания пример всички функции са различни: степен, степен и логаритъм.

В такива случаи е необходимо последователноприложете правилото за диференциране на продукта два пъти

Номерът е, че с “y” означаваме произведението на две функции: , а с “ve” означаваме логаритъма: . Защо може да се направи това? Наистина ли е – това не е произведение на два фактора и правилото не работи?! Няма нищо сложно:

Сега остава правилото да се приложи втори път в скоби:

Можете също така да се изкривите и да поставите нещо извън скоби, но в този случай е по-добре да оставите отговора точно в тази форма - ще бъде по-лесно да се провери.

Разглежданият пример може да бъде решен по втория начин:

И двете решения са абсолютно равностойни.

Пример 5

Намерете производната на функция

Това е пример за независимо решение, в примера се решава по първия метод.

Нека да разгледаме подобни примери с дроби.

Пример 6

Намерете производната на функция

Има няколко начина, по които можете да отидете тук:

Или така:

Но решението ще бъде написано по-компактно, ако първо използваме правилото за диференциране на частното , като се вземе за целия числител:

По принцип примерът е решен и ако се остави така, няма да е грешка. Но ако имате време, винаги е препоръчително да проверите черновата, за да видите дали отговорът може да бъде опростен? Нека намалим израза на числителя до общ знаменателИ да се отървем от триетажната част:

Недостатъкът на допълнителните опростявания е, че съществува риск от грешка не при намиране на производната, а при банални училищни трансформации. От друга страна, учителите често отхвърлят задачата и искат да „напомнят“ производната.

По-прост пример за самостоятелно решаване:

Пример 7

Намерете производната на функция

Продължаваме да овладяваме методите за намиране на производната и сега ще разгледаме типичен случай, когато "ужасният" логаритъм е предложен за диференциране

Пример 8

Намерете производната на функция

Тук можете да отидете по дългия път, като използвате правилото за разграничаване на сложна функция:

Но още първата стъпка веднага ви потапя в униние - трябва да вземете неприятната производна от дробна степен, а след това и от дроб.

Ето защо предикак да вземем производната на „сложен“ логаритъм, първо се опростява с помощта на добре познати училищни свойства:



! Ако имате учебна тетрадка под ръка, копирайте тези формули директно там. Ако нямате тетрадка, препишете ги на лист хартия, тъй като останалите примери от урока ще се въртят около тези формули.

Самото решение може да бъде написано по следния начин:

Нека трансформираме функцията:

Намиране на производната:

Предварителното преобразуване на самата функция значително опрости решението. По този начин, когато подобен логаритъм е предложен за диференциране, винаги е препоръчително да го „разбиете“.

А сега няколко прости примера, които можете да решите сами:

Пример 9

Намерете производната на функция

Пример 10

Намерете производната на функция

Всички трансформации и отговори са в края на урока.

Логаритмична производна

Ако производното на логаритмите е толкова сладка музика, тогава възниква въпросът: възможно ли е в някои случаи логаритъмът да се организира изкуствено? Мога! И дори необходимо.

Пример 11

Намерете производната на функция

Наскоро разгледахме подобни примери. Какво да правя? Можете последователно да приложите правилото за диференциране на частното и след това правилото за диференциране на продукта. Недостатъкът на този метод е, че в крайна сметка получавате огромна триетажна фракция, с която изобщо не искате да се занимавате.

Но на теория и практика има такова прекрасно нещо като логаритмичната производна. Логаритмите могат да бъдат организирани изкуствено, като ги "окачите" от двете страни:

Забележка : защото функция може да приеме отрицателни стойности, тогава, най-общо казано, трябва да използвате модули: , които ще изчезнат в резултат на диференциация. Текущият дизайн обаче също е приемлив, като по подразбиране се взема предвид комплексзначения. Но ако в цялата строгост, тогава и в двата случая трябва да се направи уговорка, че.

Сега трябва да „разпаднете“ логаритъма на дясната страна колкото е възможно повече (формули пред очите ви?). Ще опиша този процес много подробно:

Да започнем с диференциацията.
Заключваме и двете части под премията:

Производната на дясната страна е доста проста, няма да я коментирам, защото ако четете този текст, трябва да можете да се справите уверено.

Какво ще кажете за лявата страна?

От лявата страна имаме сложна функция. Предвиждам въпроса: „Защо, има ли една буква „Y“ под логаритъма?“

Факт е, че тази „игра с една буква“ - САМОТО Е ФУНКЦИЯ(ако не е много ясно, вижте статията Производна на имплицитно посочена функция). Следователно логаритъмът е външна функция, а "y" е вътрешна функция. И използваме правилото за диференциране на сложна функция :

От лявата страна, като по магия, имаме производна. След това, съгласно правилото за пропорцията, прехвърляме "y" от знаменателя на лявата страна към горната част на дясната страна:

А сега нека си спомним за каква функция „играч“ говорихме по време на диференциацията? Нека да разгледаме състоянието:

Окончателен отговор:

Пример 12

Намерете производната на функция

Това е пример, който можете да решите сами. Примерен дизайн на пример от този тип е в края на урока.

С помощта на логаритмичната производна беше възможно да се реши всеки от примерите № 4-7, друго нещо е, че функциите там са по-прости и може би използването на логаритмичната производна не е много оправдано.

Производна на степенно-експоненциална функция

Все още не сме обмисляли тази функция. Степенно-експоненциална функция е функция, за която степента и основата зависят от "x". Класически пример, който ще ви бъде даден във всеки учебник или лекция:

Как да намерим производната на степенно-експоненциална функция?

Необходимо е да се използва току-що обсъдената техника - логаритмичната производна. Закачаме логаритми от двете страни:

Като правило от дясната страна степента се изважда от под логаритъма:

В резултат от дясната страна имаме произведението на две функции, които ще бъдат диференцирани по стандартната формула .

Намираме производната; за да направим това, поставяме двете части под черти:

Допълнителните действия са прости:

Накрая:

Ако някое преобразуване не е напълно ясно, моля, прочетете внимателно отново обясненията на Пример № 11.

IN практически задачиСтепенно-експоненциалната функция винаги ще бъде по-сложна от примера, разгледан в лекцията.

Пример 13

Намерете производната на функция

Използваме логаритмичната производна.

От дясната страна имаме константа и произведението на два фактора - “x” и “логаритъм от логаритъм x” (друг логаритъм е вложен под логаритъма). Когато диференцирате, както си спомняме, е по-добре незабавно да преместите константата от производния знак, така че да не ви пречи; и, разбира се, прилагаме познатото правило :