Природа - великий математик. Стоит разглядеть любую молекулу, кристалл, атом, увидеть стройную систему ДНК, как станет понятно - строгие геометрические формы - конек творца нашего мира. И, если уж на то пошло, одно из самых ярких доказательств тому являются кристаллы льда - обыкновенные снежинки.

Впервые описал снежинки как кристаллы строгой формы немецкий ученый Иоганн Кеплер в трактате «О шестиугольных снежинках» (1611 г). В 1635 году снежинками заинтересовался французский философ, математик и естествоиспытатель Рене Декарт, который впоследствии написал главу о снежинках, включенные им впоследствии в «Опыт о метеорах». С изобретением микроскопа в середине 17 века представления о формах снежинок расширилось. В 1898 году Уилсон Бентли - фермер из американского штата Вермонт - опубликовал свой полувековой труд о снежных кристаллах в журнале «Харперс мэгэзин». Это была научная бомба. В 15 лет мальчик получил в подарок микроскоп, через три года он прикрепил к нему фотоаппарат и 50 лет фотографировал снежинки, делая до 300 снимков за зиму. К концу жизни Бентли коллекция насчитывала более 5000 экземпляров. Именно он доказал, что в мире нет ни одной одинаковой снежинки.

Означает ли это, что мы теперь знаем о снежинках все? Вовсе нет. На самом деле, сейчас вопросов осталось даже больше, чем в самом начале изучения. Мало того, еще в Советском Союзе появилась целая наука - гляциология. Изначально гляциология (от латинского слова «гляциес», означающего холод, лед) считалась чисто описательной наукой о ледниках, и только о ледниках. В шестидесятых годах среди гляциологов СССР разгорелась дискуссия о том, считать или не считать снег и снежный покров предметом гляциологии. В настоящее время «снеговедение» - признанная отдельная ветвь в гляциологии во всем мире.

Условия образования и формирования кристаллов льда в естественных условиях

Снег - чудеснейшая особенность нашей планеты. Он образуется на всех континентах в огромных количествах. Ежегодно снегом покрывается до 130 миллионов квадратных километров - четвертая часть всей поверхности Земли вместе с океанами. Миллиарды «невесомых» снежинок способны повлиять даже на скорость вращения Земли. Только в августе, в период наименьшей заснеженности Земли, когда снегом покрыто 8,7 % всей поверхности планеты, снежный покров весит 7400 миллиардов тонн. А к концу зимы в северном полушарии масса сезонного снега достигает 13.500 миллиардов тонн. Но снег оказывает влияние на Землю не только своим весом. Снежный покров отражает в космос почти 90 % солнечной радиации. Свободная от снега суша отражает только 10, максимум 20 %.

Всем известно, что снег образуется не на земной поверхности, а в высоких слоях атмосферы. Облака состоят из мелких снежинок и переохлажденных капель воды, и поэтому даже дожди, жидкие осадки могут иметь своим прямым предшественником атмосферный снег.

Снежинка - это замороженный кристалл воды (кристалл льда), имеющий форму шестилучевого многогранника. Кристаллы образуются в замороженных облаках при их переходе из парообразного состояния в замороженную, кристаллическую, твёрдую фазу. На возникновение и рост водных кристаллов - снежинок, напрямую оказывает свое непосредственное влияние, температура и влажность окружающего воздуха.

Давайте для начала разберемся с облаками. Облака возникают при конденсации водяного пара в атмосфере, когда образуются либо капельки воды, либо кристаллы льда. При подъеме воздух попадает в слои все более низкого давления. Воздух с подъемом на каждый километр охлаждается примерно на 10° С. Если воздух с относительной влажностью ок. 50 % поднимется более чем на 1 км, начнется образование облака. То есть высота образования облаков разная для каждого места земли, в зависимости от влажности воздуха.

Облака нижнего яруса (слоистые, слоисто-кучевые и слоисто-дождевые) состоят почти исключительно из воды, их основания располагаются примерно до высоты 2000 м. Облака, стелющиеся по земной поверхности, называются туманом.

Основания облаков среднего яруса (высококучевых и высокослоистых) находятся на высотах от 2000 до 7000 м. Эти облака имеют температуру от 0° С до –25° С и часто представляют собой смесь капель воды и ледяных кристаллов.

Облака верхнего яруса (перистые, перисто-кучевые и перисто-слоистые) обычно имеют нечеткие очертания, так как состоят из ледяных кристаллов. Их основания располагаются на высотах более 7000 м, а температура ниже –25° С.

Если ледяные кристаллы внутри облака слишком тяжелы, чтобы оставаться взвешенными в восходящем потоке воздуха, они выпадают в виде снега. Если нижние слои атмосферы достаточно теплые, снежинки тают и выпадают на землю дождевыми каплями. Даже летом в умеренных широтах дожди обычно зарождаются в форме льдинок. И даже в тропиках дожди, выпадающие из кучево-дождевых облаков, начинаются с ледяных частичек. Убедительным доказательством того, что лед в облаках существует даже летом, служит град.

В очень чистом воздухе капельки воды действительно не замерзают до температур около - 30, –40° С. Для образования ядра будущей снежинки необходимы мельчайшие примеси, на которые уже «намерзнет» снежинка. В роли таких ядер могут выступать, например, мельчайшие глинистые частички, они приобретают особенное значение при температурах ниже –10°–15° С. Снегообразование вызывают и искусственно, распылив в воздухе ионы серебра. Одно время считалось, что частые снегопады могут служить доказательством загрязненности воздуха и, соответственно, окружающей среды в регионе. Однако сейчас это утверждение уже опровергнуто

Однако есть и еще один любопытный факт. Ученых из Франции и США открыли, что основным «ядром» снежинок во всем мире служат… бактерии. Причем не просто бактерии, а, чаще всего, одна бактерия - Pseudomonas syringae. Эти палочковидные бактерии заражают большое количество растений, в том числе и сельскохозяйственных. Сейчас разработано множество средств, истребляющих бактерию, вредящую сельскому хозяйству. Не повлияет ли ее уничтожение на климат и снегообразование? Вопрос риторический.

Интересно, что ядром снежинок могут выступать и водяные пары. С этим связано такое явление, как выпадение снега в комнатах. Если в очень жарко натопленном и влажном помещении зимой, при низкой температуре, резко распахнуть дверь, то в комнате пойдет снег. Такое явление было описано в Санкт-Петербургских ведомостях за 1773 год. На балу, где собралось слишком много народа, было очень душно и некоторые дамы стали падать в обморок. Тогда один из гусар выбил окно и в помещении пошел снег. Причиной его стали водяные пары от дыхания множества людей. С этим же явлением связан пар изо рта в холодную погоду. Или иней вокруг рта от дыхания.

Классическим примером образования снежинок с ядром от мельчайших водяных паров можно назвать мой опыт с … мыльными пузырями. Проводить его можно только при температуре ниже 27 градусов. Если пускать мыльные пузыри при температуре выше 27 градусов, то пузырь спокойно долетит до земли и, возможно, даже замерзнет в ледяной шарик. Но! Если пускать мыльные пузыри при температуре от -20 градусов, то они разлетаются на снежные хлопья в воздухе, не успевая приземлиться. Под микроскопом можно рассмотреть и мельчайшие кристаллы льда, образованные от дыхания.

Классификация кристаллов льда и условия их образования

Было предложено несколько классификаций снежных кристаллов. Одна из систем, которой часто пользуются для классификации снежных осадков, была предложена Комиссией снега и льда Международной ассоциации гидрологических наук в 1951 г. Согласно этой системе, существует семь основных видов кристаллов: пластинки - призмы; звезды - кристаллы, имеющие древовидную, ветвящуюся структуру; столбики и иглы; неправильные кристаллы.

Существует и более развернутая классификация, при которой каждый тип из вышеперечисленных подразделяется на несколько видов, которые в свою очередь делятся на разновидности. Всего отмечается около 80 разновидностей.

  1. Пластинки: Самые простые из снежинок - плоские шестиугольные призмы.
  2. Звезды. 6 лучей
  3. Столбики. Полые внутри, могут иметь форму карандаша.
  4. Иглы. Длинные и тонкие кристаллы, иногда состоят из нескольких веточек.
  5. Пространственные дендриты. Объемные снежинки, образуются при срастании нескольких кристаллов.
  6. Увенчанные столбики. Образуются в случае, если столбики попадают в иные условия, и кристаллы меняют направление роста. (Фото № 8)
  7. Неправильные кристаллы. Самый распространенный тип. Образуется при повреждении снежинки.

Решив убедиться на практике в правильности данной классификации, я попыталась сопоставить свои фотографии снежинок с приведенными образцами.

Как выяснилось путем долгих проб и ошибок, фотографирование снежинок - процесс очень муторный и вовсе не такой простой. Обычный фотоаппарат просто не вытягивает подобное расширение. С помощью микроскопа удается рассмотреть несколько снежинок, но при этом необходимо работать с цифровым микроскопом на улице (а это значит, нужно подключать его через удлинители), перед работой надо охладить стекло и микроскоп, чтобы снежинки не таяли сразу, надо отрегулировать подсветку микроскопа, чтобы избежать таяния снежинок. И при всем при этом держать подальше руки и дышать в другую сторону. При этом оказалось совершенно невозможным поместить в обьектив микроскопа только одну снежинку. Пришлось помещать несколько, а это немного смазало чистоту эксперимента. Тем не менее, на сделанных мной фотографиях можно разглядеть отдельные элементы следующих видов кристаллов льда:

1) Самые распространенные среди моих фотографий - неправильные кристаллы. Объясняется это сложностью отделения снежинок друг от друга, так что по большому счету, я получала снежинки уже в сцепленном виде.

2) Но и в этих неправильных кристаллах можно было разглядеть: Столбики

4) Пластины

К сожалению, из-за того, что имеющееся оборудование не позволяло сфотографировать снежинки по отдельности, почти все полученные результаты - это сцепление нескольких снежинок. Так что понять, сколько из них являются реальными пространственными дендритами, а какие получились уже позже не представляется возможности.

Как видите, сделанные мной фотографии практически полностью подтверждают установленную классификацию снежинок. Мало того, в природных условиях существуют целые большие кристаллы, которые формируются также по принципу снежинок. Найти такие кристаллы возможно только в пещерах, в условиях вечной мерзлоты.

Метаморфозы кристаллов льда

Если в прошлой главе я привела примеры полученных типов снежинок, то в этой хотели бы рассмотреть взаимосвязь вида снежинки от температурного режима, времени и физического воздействия. Все исследования проводились с начала зимы 2015 года.

В зависимости от температуры окружающей среды

Первый снег недаром называют самым красивым. В большинстве случаев, первый снег - это даже не снежинки, а рыхлые большие снежные хлопья, которые практически моментально тают. В этом году, например, первый снег лежал около 5 часов, прежде чем растаять. А вот второй, выпавший через неделю - уже смог пролежать почти четыре дня. Первые пушистые большие хлопья снега состоят из нескольких снежинок, сцепленных между собой. По нашим подсчетам, это, обычно, от двух, до, максимум, четырех. Причем преобладают среди них секторные звезды.

Такие хлопья снега выпадают при температуре близкой к нулю. Это, так называемые, мокрый снег. Чем ниже температура, тем более мелкий и «нелипкий» снег. Меняется и форма снежинок. От красивых правильных звездочек к пластинкам и неправильным столбикам и кристаллам.

Интересно, что в 1940-е годы (1942–1947) были начаты исследования связи между формами кристаллов и температурой внутри облаков. Одно из первых подробных исследований форм ледяных кристаллов на различных высотах было выполнено с самолета ученым Вейкманом. Анализ данных показал, что при температуре ниже -25 °С преобладающей формой кристаллов является гексагональная призма. Она характерна для перистых облаков и облаков среднего яруса. При переходе от облаков верхнего яруса к облакам среднего и нижнего ярусов, то есть в область более высоких температур, призмы постепенно заменяются толстыми, а затем тонкими гексагональными пластинками. Они обычно наблюдаются при температуре выше -20 °С. При температуре от -10 °С до -20 °С преобладают кристаллы звездчатой формы. В виде таблицы это выглядит так:

Таблица 1

Сравнение фотографий, сделанных при разном температурном режиме, в моем случае выявили немного другие результаты:

Так, при температуре от -2 до -8 градусов преобладали пластинки и секторные звезды. Возможно, почти полное отсутствие игл объясняется тем, что они просто не долетали до поверхности земли, тая в воздухе.

От -10 до -20 звездчатые дендриты.

От -20 до -40 - неправильные кристаллы, состоящие из призм-пластинок.

Таблица 2

Таблица собственных наблюдений

Как видите, результаты, полученные высоко в облаках и на земле разительно отличаются друг от друга. Объяснений может быть несколько:

1) При падении снежинка деформируется, испытывая на себе разницу температур в разных слоях атмосферы

2) Самые хрупкие игольчатые и трубчатые снежинки просто не долетают до земли.

В зависимости от времени

Температурный режим - не единственное, что меняет снежинку. Меняет ее время. Чем дольше лежит снег, чем больше он утрамбовывается, тем меньше в нем остается от первоначальных кристаллов льда. С этим фактором связана такая величина как плотность снега.

Плотность снега непостоянная величина.

Плотность сухого снега - 10–20 кг/м3, влажного - 100–300 кг/м3. Уплотненный (лежалый) снег частично утрачивает свою первичную структуру в основном за счет оседания под влиянием собственного веса, температуры и ветра. Плотность лежалого снега - 200–600 кг/м3. Старый снег - полностью утрачивает первоначальную структуру и форму кристаллов, преобразовывается в более или менее крупные зерна.

Измерения проводят следующим образом. На ровном участке цилиндр снегомера погружается зазубренным концом строго вертикально в снег до соприкосновения с подстилающей поверхностью. Если попадаются снежные корки, лёгким подкручиванием цилиндра их прорезают. Когда труба достигнет почвы, записывают высоту снежного покрова по шкале. Затем с одного бока цилиндра отгребается снег, и под нижний конец цилиндра подводится специальная лопаточка. Вместе с ней цилиндр вынимают из снега и переворачивают нижним концом вверх. Очистив цилиндр от снега снаружи, подвешивают его к крючку весов. Весы уравновешивают при помощи подвижного груза и записывают число делений по линейке снегомера.

Плотность снега определяется как отношение веса пробы к её объёму, по формуле:

р - плотность пробы снега, г/см³;

G - вес пробы, в граммах;

S - приёмная площадь цилиндра, см²;

H - высота пробы снега, см.

Кроме описанного выше весового снегомера, где пробу снега взвешивают, существуют также объёмные снегомеры, не имеющие приспособлений для взвешивания. В этих снегомерах взятую пробу снега растапливают и измеряют мензуркой или дождемерным стаканом объём образовавшейся воды. Такие приборы применяются обычно на стационарных постах и станциях. Таким же способом пытались измерить плотность снега и мы.

Таблица 3

Таблица собственных измерений плотности снега в Якутске

В зависимости от физического воздействия

Когда я пробовала сфотографировать одну снежинку, я поломала огромное их количество. Обычно снежинки имеют размер около пяти миллиметров и вес порядка одного миллиграмма. Кстати, самый большой снежный кристалл естественного происхождения, когда-либо зафиксированный человеком, был в диаметре 38 см при толщине 20 см. Гигантские снежинки выпали в городе Форт-Кео, штат Монтана, в 1887 году. Об этом в 1915 году сообщил «Monthly Weather Review». Снежинки диаметром около 30 см были замечены в Сибири, а снежные хлопья диаметром до 10 см могли увидеть все жители Москвы в 1944 году.

При каждой поломки каждая снежинка издает неслышимый нашему уху звук. Но если снежинок одновременно ломается очень много, то вы этот звук услышите - это ни что иное, как скрип снега у вас под ногами. Скрип, хруст снега можно услышать только при сильной минусовой температуре, при этом, чем температура окружающий среды ниже, тем громче скрип кристалликов льда. Объясняется это просто - на холоде снежинки становятся хрупче и более твердыми. Таким образом, ломаясь, кристаллы снега издают соответствующий звук. Однако звук этот настолько тихий, что услышать его человек не в состоянии. Но когда ломаются сразу тысячи снежинок, а ученые подсчитали - в одном кубическом метре снега находится около трехсот пятидесяти снежинок, они издают звук, который можно услышать.

Если рассмотреть акустический спектр скрипа снега, то можно определить два его максимума. Это 250–400 Гц при температуре воздуха от -6 до -15 градусов Цельсия и 1000–1600 Гц при температуре ниже -15.Таким образом, наступая на морозе на снег, люди слышат соответствующий хруст. Но есть и еще одна причина, по которой снег скрипит будто сам по себе. Объясняется это трением снежинок друг об друга и их смещением относительно друг друга. В результате кристаллики также повреждаются, и появляется хруст.

Снег и экология окружающей среды.

Всем известно, что снег возле обочин оживленных трасс становится грязно-серым. Это не просто грязь. Это различные вредные примеси, тяжелые металлы и т. д., которые накапливаются в воздухе и оседают на снег. Таким образом, произведя анализ проб снега можно совершенно точно сделать заключение об экологии района, где этот снег был собран.

Такие исследования вот уже много лет проводятся в Якутске с Институте Мерзлотоведения СО РАН. Еще с 1982 года лабораторией геохимии (В. Н. Макаров, Н. Ф. Федосеев и др.) исследована динамика химических элементов и соединений в снежном покрове города Якутска и его окрестностей. Составлен “Геохимический атлас Якутска” (1985) с серией карт показывающих распределение химических элементов в снежном покрове и почвах города. (прил. № 1)

Основной объем загрязнения снегового покрова на территории Якутска привносят взвешенные вещества (пыль). К этому можно добавить использование песка в зимнее время для обработки дорожного полотна. Но все-таки основную роль в уровне загрязнения снега играет транспорт. Вдоль оживленных трасс просто залежи нефтепродуктов, формальдегида, метанола. В снеге же накапливается один из самых вредных металлов - свинец.

Чтобы представить себе примерный уровень загрязнения снегового покрытия в городе Якутске, я отобрала несколько проб и провела несколько измерений.

Как отбираются пробы? Чтобы не «загрязнить» пробы различными посторонними элементами, отбирать их надо, соблюдая специальную технологию. Лучше всего это делать с помощью новых одноразовых полиэтиленовых пакетиков, чистого пластикового совка или стаканчика. При этом нельзя касаться или собирать снег руками или варежками. При сборе снега стараются взять его с поверхности, чтобы внизу пробы не попала почва.

Для того, чтобы увидеть хотя бы примерную картину уровня загрязнения в городе, я выбрала следующие районы города:

 202 микрорайон, двор СШ № 33, где я учусь. Теоретически, 202 должен быть по уровню загрязнения на предпоследнем месте перед загородным участком Хатынг-Юряха. Рядом со школой, конечно, есть дорога. Но она не сквозная, имеет только въезд на территорию школы. И проба отобрана во дворе школы, в ста метрах от дороги и стоянки.

 район ТЭЦ (Теплоэлектростанция). Был выбран нами из-за опасений многих горожан, что технические выборсы с ТЭЦ, сопровождающиеся сильным гулом, загрязняют экологию и опасны для проживающих рядом.

Тем не менее, как уверяют сами специалисты, уровень загрязнения вокруг их здания соответствует всем нормам.

 улица Орджоникидзе. Одна из самых оживленных городских трасс. И, судя по теории, должна быть и одной из самых загрязненных на пробах.

 район Аэропорта. Оживленный район города, имеет разветвленную транспортную сеть. Проба была взята возле жилого дома, в 230 метрах от ближайщей крупной трассы.

 район Хатын-Юряха. Эта проба должна стать фоновой, то есть наиболее чистой. Потому что взята за городом, где нет оживленного потока машин, не разбрасывают песок и практически нет пыли.

Чем больше уровень загрязнение воды, а в нашем случае растаявшего снега, тем больше она минерализована. Соответственно, тем больше в ней ионов и тем больше электропроводность. С помощью миллиамперметра и источника тока я замерила все пробы, включая чистую питьевую воду «Аква». Полученные данные полностью подтвердили предварительные выводы

Электропроводность проб

Вода «Аква» - 0

Хатын-Юрях - 0,5 мА

Район ТЭЦ - 1 мА

202 мкр., 33 школа - 1мА

Район Аэропорта - 1,2мА

Ул.Орджоникидзе - 1,2мА

Как видим, самым чистым действительно оказался снег с Хатын-Юряха. За ним следует и район ТЭЦ и 202 микрорайон. Так что жильцам районы теплоэнергостанции нечего особо опасаться. А вот от двора школы я ожидала большего результата. Жилой двор в районе аэропорта оказался по уровню электропроводимости на одном уровне с районом улицы Орджоникидзе. Что тоже вызывает ряд вопросов. Чтобы ответить на них, было решено отдать такие же пробы на несколько экспертиз. Кстати, пробу с улицы Орджоникидзе можно было отличить невооруженным взглядом, снег был грязный, серого цвета. Самая чистая на вид проба оказалась с Хатын-Юряхского шоссе.

Определить уровень загрязненности снега мы решили несколькими способами: в школе, с помощью вольтметра, в лаборатории Института Мерзлотоведения СО РАН, в лаборатории «Республиканского информационно-аналитический центра экологического мониторинга.

Таблица 4

ГБУ РС(Я) «РИАЦЭМ»:

Показатели

Ул. Орджоникидзе

Район аэропорта

202 мкр.

Район ТЭЦ

Взвешенные вещества

Марганец

кремнекислота

формальдегид

Бенз(а)пирен

Загрязнение атмосферы города техногенными выбросами приводит к характерным изменениям химического состава снежного покрова.

По рассчитанным суммарным показателям загрязнения (Zc) снежного покрова районы улицы Орджоникидзе и район аэропорта относится к среднему уровню загрязнения, районы 202 микрорайона и ТЭЦ к низкому уровню загрязнения. (

Институт Мерзлотоведения:

Из официальных заключений: Основной объем загрязнения снегового покрова на территории г. Якутск привносят взвешенные вещества (пыль). По данному показателю наиболее загрязненной является проба, отобранная в районе улицы Орджоникидзе, что обусловлено интенсивным движением транспорта, использованием песка в зимнее время обработки дорожного покрова. Транспорт играет основную роль в загрязнении снегового покрова. Так наибольшие концентрации нефтепродуктов, формальдегида и метанола фиксируются в районе улицы Орджоникидзе и аэропорта.

В пробах было обнаружено: формальдегид, метанол, кремнекислота, бензапирен, мышьяк, свинец, железо, медь, цинк, марганец. Судить об уровне загрязнения можно даже по одному элементу - свинцу. Чем больше свинца в пробах, тем опасней экологическая ситуация в регионе.

Итак, школьный опыт с миллиамперметром и источником тока оказался практически также эффективен, как выводы двух профессиональных лабораторий.

Заодно было решено проверить радиоактивность снега. А вернее, впитывает ли снег радиацию? Для этого опыта мне пригодился большой кусок минерала - чароит, который добывается в Якутии. Красивый поделочный минерал грешит повышенным радиационным фоном. Вот и мой камень показывает превышенный радиационный фон в 23мкр в час. Измеряла я с помощью бытового домашнего приборы, измеряющего радиационный фон. Позже этот камень я положила на сутки в снег и измерила потом уже только снег. Прибор показал 20 мкр. в час. До этого контакта снег показывал 16 мкр. в час. Из чего можно сделать вывод, что снег (вода) впитывает в себя радиацию, при контакте с радиоактивным излучением.

Конечно, после этой зимы я стала знать о снеге гораздо больше, чем могла себе представить раньше. А уж о том, как сложно сделать фотографии снежинок, знает теперь вся моя семья, отморозившая в совокупности 8 пальцев минимум. Даже несчастный цифровой микроскоп с LED-экраном соглашался работать на холоде только пять минут, после чего выключался. Однако всех нас так захватило это исследование, что мы совершенно точно будем продолжать его и дальше. Тем более, что кристаллы льда все еще хранят в себе огромное количество тайн.

ледяные кристаллы

Альтернативные описания

Атмосферное явление

Вид атмосферных осадков

Зимний художник, рисующий одной краской

Изморозь

Кристалический конденсат воздушной влаги

Погодное явление

Седина на дереве

Синий, синий, ложившийся на провода (песенное)

Слой ледяных кристаллов на охлаждаемой поверхности

Тонкий слой ледяных кристаллов, образующийся благодаря испарениям на охлаждающейся поверхности

Тонкий снежный слой на охлаждающейся поверхности

Ледяные кристаллы, образующиеся из водяных паров воздуха

. «окоченевшая» роса

Марка российского холодильника

Тонкий снежный слой, образующийся из-за испарений

Атмосферные осадки

Синий лежебока на проводах

. «и не снег, и не лед, а серебром деревья уберет» (загадка)

Белые осадки

Изморозь на проводах

Осадки на деревьях

Покрывает деревья зимой

Зимняя одежда дерева

Снежная роса

Заснеженная влага

Зимний налет на елях

Белоснежные осадки

Кружевная изморозь

Снежные осадки

Снежный налет

Зимний налет

. «белизна» на деревьях

Зимние осадки

Окутывает деревья зимой

Застывшие испарения

Синий лежебока (песенное)

Застывший пар

Зимний наряд деревьев

Белая зимняя бахрома

Синий-синий лег на провода

. «роса» зимой

Заснеженная роса

Осадки на проводах

Зимой на деревьях

Синий лег на провода

Тонкий снежный слой

Снег на ветвях и проводах

. «и ель сквозь... зеленеет»

Синий лежебока (песен.)

Серебряное покрытие дерева

Осадки по зиме

Синие осадки на проводах (песен.)

Другое название изморози

Изморозь по сути

. «Как войдешь за порог, всюду...»

Изморозь вкраце

Изморозь после холодной ночи

. «морозный ворс»

Почти снег

Снежная бахрома

Замерзшая роса

Практически то же, что изморозь

Почти снег по утрам

Изморозь на проводах в песне

Зимняя бахрома на кустах

Замерзший пар

Зимняя роса

Зимнее покрывало кустов

. «седина» на ветвях

. «морозный пушок»

Тонкий слой льда

Тонкий слой снега

Зимняя «седина»

Зимний покров кустов

Тот, что лег на провода

Лед на ветках

Изморозь на деревьях

Зимнее серебро на деревьях

Картина Гончаровой

То, что приходиться отдирать от машины по осени

Зимняя изморозь

Замерзший пар

Атмосферное явление

Тонкий слой ледяных кристаллов, образующийся благодаря испарениям на охлаждающейся поверхности

. "И ель сквозь... зеленеет"

. "Как войдешь за порог, всюду..."

. "Морозный ворс"

. "Морозный пушок"

. "Окоченевшая" роса

. "Роса" зимой

. "Седина" на ветвях

. "Синийсиний... лег на провода"

. "и не снег, и не лед, а серебром деревья уберет" (загадка)

. "Белизна" на деревьях

Зимняя "седина"

Мерзлые испарения, сырость в воздухе, которая садится на предметы, кои холоднее воздуха, и замерзает на них пушком, что случается после отдачи сильных морозов. От дыханья иней садится на бороду, воротник. На деревьях, густой иней, куржа, опока. Иней на плодах, выпотелый туск. Пушистые инеи-к ведру. Большой иней, бугры снлга, глубоко промерзлая земля, к хлебородию. Большой иней во всю зиму, тяжелое лето для здоровья. На пророка Аггея и Даниила иней, теплые святки, и декабря. На Григория Никийского января) иней на стогах- к мокрому году. Инеистый, покрытый инеем; заинеивший; обильный инеем. Иневоатый, инеистый, но в меньшей степени. Инеелом м. по(из)ломанные тяжестью инея сучья дерев. Иневеть или индеветь, инеть, инеить?, покрываться инеем. Углы избы промерзли и заиневели, индевеют

Замёрзшая роса

Синий-синий, лег на провода

. "Синий-синий... лёг на провода"

Значение льда в поддержании жизни на нашей планете трудно недооценить. Лёд оказывает большое влияние на условия обитания и жизнедеятельности растений и животных и на разные виды хозяйственной деятельности человека. Покрывая воду, лед из-за своей низкой плотности играет в природе роль плавучего экрана, защищающего реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводным обитателям. Природный лёд используется для хранения и охлаждения пищевых продуктов, биологических и медицинских препаратов, для чего он специально производится и заготавливается, а талую воду, приготовленную при плавлении льда, используют в народной медицине – для повышения обмена веществ и выведения шлаков из организма. Статья знакомит читателя с новыми малоизвестными свойствами и модификациями льда.

Лёд – кристаллическая форма воды, обладающая по последним данным четырнадцатью структурными модификациями. Среди них имеются и кристаллические (природный лед) и аморфные (кубический лед) и метастабильные модификации, различающиеся друг от друга взаимным расположением и физическими свойствами молекул воды, связанными водородными связями, формирующими кристаллическую решетку льда. Все они кроме привычного нам природного льда I h , кристаллизующего в гексагональной решетке, образуются в условиях экзотических - при очень низких температурах сухого льда и жидкого азота и высоких давлениях в тысячи атмосфер, когда углы водородных связей в молекуле воды изменяются и образуются кристаллические системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле.

В природе лёд представлен главным образом, одной кристаллической разновидностью, кристаллизующейся в гексагональной решётке, напоминающей структуру алмаза, где каждая молекула воды окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра . В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность, составляющая 0,931 г/см 3 .

Самое необычное свойство льда - это удивительное многообразие внешних проявлений . При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс. Лёд встречается в природе в виде материкового, плавающего и подземного льда, а также в виде снега и инея. Он распространён во всех областях обитания человека. Собираясь в больших количествах, снег и лед формируют особые структуры с принципиально иными, чем у отдельных кристаллов или снежинок, свойствами. Природный лед сформирован в основном льдом осадочно-метаморфического происхождения, образовавшимся из твердых атмосферных осадков в результате последующего уплотнения и перекристаллизации. Характерная особенность природного льда - зернистость и полосчатость. Зернистость обусловлена процессами рекристаллизации; каждое зерно ледникового льда представляет собой кристалл неправильной формы, тесно примыкающий к другим кристаллам в ледяной толще таким образом, что выступы одного кристалла плотно входят в углубления другого. Такой лед получил название поликристаллического. В нем каждый кристалл льда представляет собой слой тончайших листочков, налегающих друг на друга в базисной плоскости, перпендикулярной к направлению оптической оси кристалла.

Общие запасы льда на Земле составляют согласно расчетам около 30 млн. км 3 (табл. 1). Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км. Также имеются данные о наличии льда на планетах Солнечной системы и в кометах. Лед имеет столь большое значение для климата нашей планеты и обитания на ней живых существ, что ученые обозначили для льда особую среду - криосферу, границы которой простираются высоко в атмосферу и глубоко в земную кору .

Табл. 1 . Количество, распространение и время жизни льда.

Площадь распространения

Средняя концентрация, г/см 2

Скорость прироста массы, г/год

Среднее время жизни, год

млн. км 2

Подземный лёд

Морской лёд

Снежный покров

Айсберги

Атмосферный лёд

Кристаллы льда неповторимы по своей форме и пропорциям. Любой растущий природный кристалл, включая кристалл льда всегда стремится создать идеальную правильную кристаллическую решетку, поскольку это выгодно с точки зрения минимума его внутренней энергии. Любые примеси, как известно, искажают форму кристалла, поэтому при кристаллизации воды в первую очередь в решётку встраиваются молекулы воды, а посторонние атомы и молекулы примесей вытесняются в жидкость. И только когда примесям деваться уже некуда, кристалл льда начинает встраивать их в свою структуру или оставляет в виде полых капсул с концентрированной незамерзающей жидкостью - рассолом. Поэтому морской лёд пресный и даже самые грязные водоемы покрываются прозрачным и чистым льдом. При плавлении льда он вытесняет примеси в рассол. В планетарном масштабе феномен замерзания и таяния воды, наряду с испарением и конденсацией воды, играет роль гигантского очистительного процесса, в котором вода на Земле постоянно очищает сама себя .

Табл. 2 . Некоторые физические свойства льда I.

Свойство

Значение

Теплоемкость, кал/(г·°C)

Сильно уменьшается с понижением температуры

Теплота таяния, кал/г

Теплота парообразования, кал/г

Коэффициент термического расширения, 1/°C

9,1·10 -5 (0 0 C)

Поликристаллический лёд

Теплопроводность, кал/(см·сек·°C)

Поликристаллический лёд

Показатель преломления:

Поликристаллический лёд

Удельная электрическая проводимость, ом -1 ·см -1

Кажущаяся энергия активации 11 ккал/моль

Поверхностная электропроводность, ом -1

10 -10 (-11 0 C)

Кажущаяся энергия активации 32 ккал/моль

Модуль упругости Юнга, дин/см 2

9·10 10 (-5 0 C)

Поликристаллический лёд

Сопротивление, МН/м 2:

раздавливанию

Поликристаллический лёд

Поликристаллический лёд

Поликристаллический лёд

Динамическая вязкость, пуаз

Поликристаллический лёд

Энергия активации при деформировании и механической релаксации, ккал/моль

Линейно растет на 0,0361 ккал/(моль· 0 C) от 0 до 273,16 К

Примечание : 1 кал/(г·°С)=4,186 кДж/(кг·К); 1 ом -1 ·см -1 =100 сим/м; 1 дин = 10 -5 Н; 1 Н = 1 кг·м/с²; 1 дин/см=10 -7 Н/м; 1 кал/(см·сек°С)=418,68 вт/(м·К); 1 пуаз=г/см·с = 10 -1 Н сек/м 2 .

В связи с широким распространением льда на Земле, отличие физических свойств льда (табл. 2) от свойств других веществ играет важную роль во многих природных процессах . Лёд обладает многими другими полезными для поддержания жизни свойствами и аномалиями – аномалиями плотности, давления, объема, теплопроводности.Если бы не было водородных связей, сцепляющих молекулы воды в кристалл, лед плавился бы при –90 °С. Но этого не происходит из-за наличия водородных связей между молекулами воды. Вследствие меньшей, чем у воды, плотности лёд образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от донного замерзания, поскольку его теплопроводность намного меньше, чем воды. При этом наименьшая плотность и объем наблюдается при +3,98 °С (рис. 1). Дальнейшее охлаждение воды до 0 0 С постепенно приводит не к уменьшению, а к увеличению ее объема почти на 10%, когда вода превращается в лед. Такое поведение воды свидетельствует об одновременном существовании в воде двух равновесных фаз – жидкой и квазикристаллической по аналогии с квазикристаллами, кристаллическая решетка которых имеет не только периодическое строение, но и обладает осями симметрии разных порядков, существование которых ранее противоречило представлениям кристаллографов . Эта теория, впервые выдвинутая известным отечественным физиком-теоретиком Я. И. Френкелем, основана на предположении, что часть молекул жидкости образует квазикристаллическую структуру, тогда как остальные молекулы являются «газоподобными», свободно движущимися по объему. Распределение молекул в малой окрестности любой фиксированной молекулы воды имеет определенную упорядоченность, несколько напоминающую кристаллическую, хотя и более рыхлую . По этой причине структуру воды иногда называют квазикристаллической или кристаллоподобной, т. е. обладающей симметрией и наличием упорядоченность во взаимном расположении атомов или молекул.

Другое свойство состоит в том, что скорость течения льда прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры лёд приближается по своим свойствам к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть льда в 10 6 раз выше, чем у горных пород . Благодаря своей текучести лёд не накопляется в одном месте, а в виде ледников постоянно перемещается. Зависимость между скоростью течения и напряжением у поликристаллического льда гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения.

Видимый свет льдом практически не поглощается, поскольку световые лучи проходят кристалл льда насквозь, но задерживает ультрафиолетовое излучение и большую часть инфракрасного излучения Солнца. В этих областях спектра лёд выглядит абсолютно чёрным, поскольку коэффициент поглощения света в этих областях спектра очень велик. В отличие от кристаллов льда, белый свет, падающий на снег, не поглощается, а многократно преломляется в ледяных кристаллах и отражается от их граней. Поэтому снег выглядит белым.

Вследствие очень высокой отражательной способности льда (0,45) и снега (до 0,95) покрытая ими площадь - в среднем за год около 72 млн. км 2 в высоких и средних широтах обоих полушарий - получает солнечного тепла на 65% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, но температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние льда, имеющего очень высокую теплоту таяния.

К другим необычным свойствам льда относят и генерацию электромагнитного излучения его растущими кристаллами . Известно, что большинство растворенных в воде примесей не передаются льду, когда он начинает расти; они вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. При этом примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом формируется ледовая структура.

Но самое удивительное в структуре льда заключается в том, что молекулы воды при низких температурах и высоких давлениях внутри углеродных нанотрубок могут кристаллизоваться в форме двойной спирали, напоминающей молекулы ДНК. Это было доказано недавними компьютерными экспериментами американских учёных под руководством Сяо Чэн Цзэна из Университете штата Небраска (США). Чтобы вода сформировала спираль в моделируемом эксперименте она помещалась в нанотрубки диаметром от 1,35 до 1,90 нм под высоким давлением, варьирующимися от 10 до 40000 атмосфер и задавалась температура –23 °C . Ожидалось увидеть, что вода во всех случаях образует тонкую трубчатую структуру. Однако, модель показала, что при диаметре нанотрубки в 1,35 нм и внешнем давлении 40000 атмосфер водородные связи в структуре льда искривились, что привело к образованию спирали с двойной стенкой – внутренней и внешней. Внутренняя стенка в этих условиях оказалась скрученной в четверо спиралью, а внешняя стенка состояла из четырёх двойных спиралей, похожих на молекулу ДНК (рис. 2). Данный факт может служить подтверждением связи структуры жизненно-важной молекулы ДНК со структурой самой воды и что вода служила матрицей для синтеза молекул ДНК.

Другое из важнейших свойств воды, открытых в последнее время, заключается в том, что вода обладает способностью запоминать информацию о прошлых воздействиях. Это впервые доказали японский исследователь Масару Эмото и наш соотечественник Станислав Зенин , одним из первых предложивший кластерную теорию строения воды, состоящей из циклических ассоциатов объемной полиэдрической структуры – кластеров общей формулы (Н 2 О) n , где n по последним данным может достигать сотен и даже тысяч единиц. Именно благодаря наличию в воде кластеров вода обладает информационными свойствами. Исследователи фотографировали процессы замораживания воды в микрокристаллы льда, действуя на неё различными электромагнитными и акустическими полями, мелодиями, молитвой, словами или мыслями. Оказалось, что под действием положительной информации в виде красивых мелодий и слов лёд замораживался в правильные симметричные шестигранные кристаллы. Там, где звучала неритмичная музыка, злые и оскорбительные слова, вода, наоборот, замерзала в хаотичные и бесформенные кристаллы. Это является доказательством того, что вода обладает особой, чувствительной к внешним информационным воздействиям структурой. Предположительно мозг человека, состоящий на 85-90% из воды, обладает сильным структурирующим воздействием на воду.

Разгадка структуры льда и его свойств заключается в строении его кристалла. Кристаллы всех модификаций льда построены из молекул воды H 2 O, соединённых водородными связями в трёхмерные сетчатые каркасы с определенным расположением водородных связей. Молекулу воды можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием) . В её центре находится атом кислорода, находящийся в состоянии sp 3 -гибридизации, а в двух вершинах - по атому водорода, по одному из 1s-электронов которых задействованы в образовании ковалентной Н-О связи с кислородом. Две оставшиеся вершины занимают пары не спаренных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, поэтому их называют не поделенными. Пространственная форма молекулы Н 2 О объясняется взаимным отталкиванием атомов водорода и не поделенных электронных пар центрального атома кислорода.

Водородная связь имеет важное значение в химии межмолекулярных взаимодействий и обусловлена слабыми электростатическими силами и донорно-акцепторными взаимодействиями . Она возникает при взаимодействии электронодефицитного электронами атома водорода одной молекулы воды с неподеленной электронной парой атома кислорода соседней молекулы воды (О-Н…О). Отличительной особенностью водородной связи является сравнительно низкая прочность; она в 5-10 раз слабее химической ковалентной связи . По энергии водородная связь занимает промежуточное положение между химической связью и ван-дер-ваальсовыми взаимодействиями, удерживающими молекулы в твердой или жидкой фазе . Каждая молекула воды в кристалле льда может одновременно образовывать четыре водородные связи с другими соседними молекулами под строго определенными углами, равными 109°47", направленных к вершинам тетраэдра, которые не позволяют при замерзании воды создавать плотную структуру (рис. 3). В структурах льда I, Ic, VII и VIII этот тетраэдр правильный. В структурах льда II, III, V и VI тетраэдры заметно искажены . В структурах льда VI, VII и VIII можно выделить две взаимоперекрещивающиеся системы водородных связей. Этот невидимый каркас из водородных связей располагает молекулы воды в виде сетчатой сетки, по структуре напоминающей шестигранные соты с полыми внутренними каналами. Если лед нагреть, сетчатая структура разрушается: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, - этим объясняется, почему вода тяжелее льда.

Специфика водородных связей и межмолекулярных взаимодействий, характерная для структуры льда, сохраняется в талой воде, так как при плавлении кристалла льда разрушается только 15% всех водородных связей. Поэтому присущая льду связь каждой молекулы воды с четырьмя соседними ("ближний порядок") не нарушается, хотя и наблюдается бoльшая размытость кислородной каркасной решетки. Водородные связи могут сохраняться и при кипении воды. Лишь в водяном пару водородные связи отсутствуют.

Лед, который образуется при атмосферном давлении и плавится при 0 °С, - самое привычное, но всё же до конца не изученное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода тетраэдров молекул воды выстроены упорядоченно, образуя правильные шестиугольники, наподобие шестигранных пчелиных сот, а атомы водорода занимают самые разные положения на соединяющих атомы кислорода водородных связях (рис. 4). Поэтому возможны шесть эквивалентных ориентаций молекул воды относительно их соседей. Часть из них исключается, поскольку нахождение одновременно двух протонов на одной водородной связи маловероятно, но остаётся достаточная неопределённость в ориентации молекул воды. Такое поведение атомов нетипично, поскольку в твердом веществе все атомы подчиняются одному закону: либо они атомы расположены упорядоченно, и тогда это - кристалл, либо случайно, и тогда это - аморфное вещество. Такая необычная структура может реализоваться в большинстве модификаций льда - I h , III, V, VI и VII (и по-видимому в Ic) (табл. 3), а в структуре льда II, VIII и IX молекулы воды ориентационно упорядочены. По выражению Дж. Бернала лёд кристалличен в отношении атомов кислорода и стеклообразен в отношении атомов водорода.

В других условиях, например в Космосе при больших давлениях и низких температурах, лёд кристаллизуется иначе, образуя другие кристаллические решетки и модификации (кубическая, тригональная, тетрагональная, моноклинная и др.), каждая из которых обладает собственной структурой и кристаллической решеткой (табл. 3). Структуры льдов различных модификаций были рассчитаны российскими исследователями д.х.н. Г.Г. Маленковым и к.физ.-мат.н. Е.А. Желиговской из Института физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук . Льды II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает -170 °С (рис. 5). При охлаждении приблизительно до -150 °С природный лёд превращаются в кубический лёд Ic, состоящий из кубов и октаэдров размером в несколько нанометров . Лед I c иногда появляется и при замораживании воды в капиллярах, чему, видимо, способствует взаимодействие воды с материалом стенки и повторение его структуры. Если температура чуть выше -110 0 C, на металлической подложке формируются кристаллы более плотного и тяжелого стеклообразного аморфного льда с плотностью 0,93 г/см 3 . Обе эти формы льда могут самопроизвольно переходить в гексагональный лёд, причём тем быстрее, чем выше температура.

Табл. 3 . Некоторые модификации льда и их физические параметры.

Примечание . 1 Å = 10 -10 м

Существуют и льды высокого давления - II и III тригональной и тетрагональной модификаций, образованные из полых соток, сформированных шестиугольными гофрированными элементами, сдвинутыми друг относительно друга на одну треть (рис. 6 и рис. 7). Эти льды стабилизируются в присутствии благородных газов гелия и аргона. В структуре льда V моноклинной модификации углы между соседними атомами кислорода составляют от 86 0 до 132°, что сильно отличается от валентного угла в молекуле воды, составляющем 105°47’. Лед VI тетрагональной модификации состоит из двух вставленных друг в друга каркасов, между которыми нет водородных связей, в результате чего формируется объёмоцентрированная кристаллическая решётка (рис. 8). Основу структуры льда VI составляют гексамеры - блоки из шести молекул воды. Их конфигурация в точности повторяет строение устойчивого кластера воды, которую дают расчёты. Аналогичную структуру с каркасами льда I, вставленных друг в друга, имеют льды VII и VIII кубической модификации, которые являются низкотемпературными упорядоченными формами льда VII. При последующем увеличении давления расстояние между атомами кислорода в кристаллической решетке льдов VII и VIII будет уменьшаться, в результате формируется структура льда X, атомы кислорода в котором выстроены в правильную решётку, а протоны упорядочены.

Лед XI образуется при глубоком охлаждении льда I h c добавкой щелочи ниже 72 К при нормальном давлении. В этих условиях образуются гидроксильные дефекты кристалла, позволяющие растущему кристаллу льда изменять свою структуру. Лед XI обладает ромбической кристаллической решёткой с упорядоченным расположением протонов и формируется сразу во многих центрах кристаллизации около гидроксильных дефектов кристалла.

Среди льдов имеются и метастабильные формы IV и XII, времена жизни которых составляют секунды, обладающие самой красивой структурой (рис. 9 и рис. 10). Для получения метастабильных льдов нужно сжимать лёд I h до давления 1,8 ГПа при температуре жидкого азота. Эти льды образуются гораздо легче и особенно стабильны, если давлению подвергается переохлажденная тяжёлая вода. Другая метастабильная модификация - лёд IX образуется при переохлаждении льда III и по существу представляет собой его низкотемпературную форму.

Две последние модификации льда - с моноклинной XIII и ромбической конфигурацией XIV были открыты учеными из Оксфорда (Великобритания) совсем недавно - в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре -160 0 С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора - соляной кислоты, которая повысила подвижность молекул воды при низких температурах. На Земле подобные модификации льда образовываться не могут, но они могут существовать в Космосе на остывших планетах и замерзших спутниках и кометах. Так, расчёт плотности и тепловых потоков с поверхности спутников Юпитера и Сатурна позволяет утверждать, что у Ганимеда и Каллисто должна быть ледяная оболочка, в которой чередуются льды I, III, V и VI. У Титана льды образуют не кору, а мантию, внутренний слой которой состоит из льда VI, других льдов высокого давления и клатратных гидратов, а сверху расположен лёд I h .

Высоко в атмосфере Земли при низкой температуре вода кристаллизуется из тетраэдров, формирующих гексагональный лед I h . Центром образования кристаллов льда является твердые частицы пыли, которые поднимает в верхние слои атмосферы ветер. Вокруг этого зародышевого микрокристалла льда в шести симметричных направлениях нарастают иголочки, образованные отдельными молекулами воды, на которых вырастают боковые отросточки - дендриты. Температура и влажность воздуха вокруг снежинки одинаковы, поэтому изначально она симметрична по своей форме. По мере формирования снежинки постепенно опускаются в более низкие слои атмосферы, где температура выше. Здесь происходит плавление и их идеальная геометрическая форма искажается, формируя многообразие снежинок (рис. 11).

При дальнейшем плавлении гексагональная структура льда разрушается и образуется смесь циклических ассоциатов кластеров, а также из три-, тетра-, пента-, гекса-меров воды (рис. 12) и свободных молекул воды. Изучение строения образующихся кластеров часто значительно затруднено, поскольку вода по современным данным – смесь различных нейтральных кластеров (Н 2 О) n и их заряженных кластерных ионов [Н 2 О] + n и [Н 2 О] - n , находящихся в динамическом равновесии между собой со временем жизни 10 -11 -10 -12 секунд .

Кластеры способны взаимодействовать друг с другом за счет выступающих наружу граней водородных связей, образуя более сложные полиэдрические структуры, такие как гексаэдр, октаэдр, икосаэдр и додекаэдр. Таким образом, структура воды связана с так называемыми Платоновыми телами (тетраэдр, гексаэдр, октаэдр, икосаэдр и додекаэдр), названными в честь открывших их древнегреческого философа и геометра Платона, форма которых определяется золотой пропорцией (рис. 13).

Число вершин (В), граней (Г) и рёбер (Р) в любом пространственном многограннике описывается соотношением:

В + Г = Р + 2

Отношение количества вершин (В) правильного многогранника к количеству рёбер (Р) одной его грани равно отношению количества граней (Г) этого же многогранника к количеству рёбер (Р), выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра (6 граней) и октаэдра (8 граней) - 2:1, а у додекаэдра (12 граней) и икосаэдра (20 граней) - 4:1.

Структуры полиэдрических кластеров воды, рассчитаные российскими учеными, были подтверждены с помощью современных методов анализа: спектроскопией протонного магнитного резонанса, фемтосекундной лазерной спектроскопией, дифракцией рентгеновских лучей и нейтронов на кристаллах воды . Открытие кластеров воды и способность воды хранить информацию – два самых важных открытия XXI тысячелетия. Это наглядно доказывает, что природе характерна симметрия в виде точных геометрических форм и пропорций, характерным кристаллам льда.

ЛИТЕРАТУРА.

1. Белянин В., Романова Е. Жизнь, молекула воды и золотая пропорция // Наука и жизнь, 2004, Т. 10, № 3, с. 23-34.

2. Шумский П. А., Основы структурного ледоведения. - Москва, 1955б с. 113.

3. Мосин О.В., Игнатов И. Осознание воды как субстанции жизни. // Сознание и физическая реальность. 2011, Т 16, № 12, с. 9-22.

4. Петрянов И. В. Самое необыкновенное вещество в мире.- Москва, Педагогика, 1981, с. 51-53.

5 Эйзенберг Д, Кауцман В. Строение и свойства воды. – Ленинград, Гидрометеоиздат, 1975, с. 431.

6. Кульский Л. А., Даль В. В., Ленчина Л. Г. Вода знакомая и загадочная. – Киев, Родянбска школа, 1982, с. 62-64.

7. Зацепина Г. Н. Структура и свойства воды. – Москва, изд. МГУ, 1974, с. 125.

8. Антонченко В. Я., Давыдов Н. С., Ильин В. В. Основы физики воды - Киев, Наукова думка, 1991, с. 167.

9. Simonite T. DNA-like ice "seen" inside carbon nanotubes // New Scientist, V. 12, 2006.

10. Эмото М. Послания воды. Тайные коды кристаллов льда. - София, 2006. с. 96.

11. Зенин С. В., Тяглов Б. В. Природа гидрофобного взаимодействия. Возникновение ориентационных полей в водных растворах // Журнал физической химии, 1994, Т. 68, № 3, с. 500-503.

12. Пиментел Дж., Мак-Клеллан О. Водородная связью - Москва, Наука, 1964, с. 84-85.

13. Бернал Дж., Фаулер Р. Структура воды и ионных растворов // Успехи физических наук, 1934, Т. 14, № 5, с. 587-644.

14. Хобза П., Заградник Р. Межмолекулярные комплексы: Роль Ван-дер-ваальсовых систем в физической химии и биодисциплинах. – Москва, Мир, 1989, с. 34-36.

15. Паундер Э. Р. Физика льда, пер. с англ. - Москва, 1967, с. 89.

16. Комаров С. М. Ледяные узоры высокого давления. // Химия и жизнь, 2007, №2, С. 48-51.

17. Е. А. Желиговская, Г. Г. Маленков. Кристаллические льды // Успехи химии,2006, № 75, с. 64.

18. Fletcher N. H. The chemical physics of ice, Cambreage, 1970.

19. Немухин А. В. Многообразие кластеров // Российский химический журнал, 1996, Т. 40, № 2, с. 48-56.

20. Мосин О.В., Игнатов И. Структура воды и физическая реальность. // Сознание и физическая реальность, 2011, Т. 16, № 9, с. 16-32.

21. Игнатов И. Биоэнергетическая медицина. Зарождение живой материи, “память воды”, биорезонанс, биофизические поля. - ГеяЛибрис, София, 2006, с. 93.

Кристаллы льда в облаках существуют в самых разных формах, из которых хорошо знают только снежинки, хотя еще бывают пластинки (толстые и тонкие), колонны (полые и цельные), иголки и пирамидальные и т.д.. Молекулы льда (воды) так устроены, что формируют гексагональную кристалическую решетку, поэтому обычно, кристалы льда растут шестиугольными.

Но идеальной формы "пластинок" и "колонн", показанной на рисунке выше, у кристаллов льда которые находятся а воздухе практически не бывает, все намного сложнее. Форма кристалла определяется условиями (температуры и влажности воздуха) при которых он образовался и вырос, см. "морфологическую схему" с сайта SnowCrystals.com :


Форма кристалла льда в зависимости от температуры и влажности.

Для изучения того, как образуется гало пока используются только самые простые две формы кристаллов, но не так давно для расчетов очень редких гало стали использовать пирамидальные формы. Пока этого достаточно (для создания почти сотни различных видов гало), хотя еще существует несколько гало без удовлетворительной теории.

Основные формы кристаллов льда:

  • шестиугольные правильные
    • плоские призмы (размер основания больше высоты) — "пластинки" (plate)
    • колоннообразные (длина-высота больше основания) — "колонны" (column)
  • шестиугольные неправильной формы
    • скошеные, неправильной формы
    • с вкраплениями, plates with inner structures decorated plates
  • пирамидальные
    • plate, плоские пирамидальные
    • column, колоннообразные пирамидальные
  • другие (иногда моделируют гало с помощью других форм, например, кубических, либо склееных нескольких 6-ти угольных)

Кроме формы кристаллов для образования гало важно то, как они расположены в воздухе:
произвольно или упорядочено, парят или вращаются.

Всего с учетом формы и ориентации выделяют следующие основные условия формирования гало:

  • Не упорядоченые кристаллы
    • Произвольно ориентированные шестиугольные кристаллы
    • Случайно ориентированные пирамидальные кристаллы
  • Упорядоченные кристаллы
    • Горизонтально ориентированные колоннообразные кристаллы
    • Горизонтально ориентированные плоские призмы
    • Ориентированные плоские пирамидальные кристаллы
    • Ориентированные колоннообразные пирамидальные кристаллы
  • Сложно упорядоченые кристаллы (двойная ориентация)
    • Ориентация Парри (горизонтально ориентированные колоннообразные кристаллы с дополнительным условием — горизонтальность боковых граней)
    • Ориентация Ловица (горизонтально ориентированные "пластинки" с дополнительным условием — вращение вокруг вертикальной оси)

При наблюдении, в отдельном облаке могут оказаться кристаллы одной формы (если облако образовалось все сразу при одних условиях), либо множество кристаллов разных форм (например, 10% пластинок, 89% колонн и 1% пирамидальных пластинок). Кроме того, все кристаллы могут летать, крутиться, планировать совершенно независимо друг от друга. По яркости разных форм гало можно оценить примерное присутствие тех или иных форм кристаллов и попытаться смоделировать то, что вы видели на небе с помощью симулятора.

Пример

Ниже показаны расчеты наблюдения, если в воздухе присутствуют сразу несколько типов и ориентаций кристаллов.

1) высота солнца — 15 градусов, случайные обычные и пирамидальные кристаллы, они же присутствуют в колоннообразном виде и виде плоских призм, в ориентации Парри и Ловица:

2) те же условия, цент схемы — зенит:

3) те же условия, высота солнца — 35 градусов:

4) высота солнца 55 градусов:

Ещё один вид кристаллов известен всем. Эти кристаллы почти полгода (а в полярных областях и круглый год) покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах. Это – кристаллы замерзшей воды, то есть лёд и снег.

Каждый отдельный кристаллик льда, каждая снежинка хрупка и мала. Часто говорят, что снег падает, как пух. Но даже и это сравнение, можно сказать, слишком «тяжёлое»: ведь каждая снежинка примерно в десять раз легче пушинки. Десяток тысяч снежинок весит столько же, сколько весит одна копейка. Но, соединяясь в огромных количествах вместе, снежные кристаллы могут, например, остановить поезд, образовав сугробы на железнодорожных путях; они могут даже сдвигать и разрушать скалы, как это делают снежные лавины и ледники.

Нескончаемо разнообразны шестилучевые звёздочки снежинок.

Прикоснитесь пальцем к снежинке, и она мгновенно растает от теплоты вашей руки. Сбросьте снежинку с рукава пальто, – вы, конечно, не услышите, как она упала, а может быть, и сломалась. Но прислушайтесь, как скрипит у вас под ногами свежевыпавший снег. Что это за скрип? Это трещат и ломаются миллионы снежных кристалликов. В ясную погоду снег мерцает и искрится, «играет» на солнце. Как от миллионов крохотных зеркал, отражаются лучи света от плоских граней кристалликов снега.

Отдельными кристалликами снега – снежинками – вы, наверно, не раз любовались.

«Мелькает, вьётся первый снег, Звездами падая на брег»,–

говорит о снеге А. С. Пушкин. Действительно, все снежинки – шестилучевые звёздочки или изредка – шестисторонние пластинки.


Фотографии снежинок из атласа Бентлея.

На снежинках легче всего убедиться в том, что кристаллы обычно имеют правильную и симметричную форму. Бесконечно разнообразны формы снежинок. Один натуралист больше пятидесяти лет занимался фотографированием снежинок под микроскопом. Он составил атлас нескольких тысяч фотографий снежинок, и все эти снежинки различны, вы не найдёте там ни одной пары одинаковых. Но всё-таки наверняка можно сказать, что в этом атласе собраны отнюдь не все формы снежинок; можно снять ещё много тысяч таких фотографий и всё же не исчерпать колоссального разнообразия форм кристаллов снега.

Интересно сравнить современные фотографии снежинок с рисунком, взятым из старинной шведской книги «История северных народов» Олафа Магнуса. Вот наглядное свидетельство того, что люди давно уже обратили внимание на удивительные формы снежинок. Но как наивны эти рисунки четырёхсотлетней давности и как мало похожи они на истинные узоры снежных кристаллов!


Рисунки снежинок из книги Олафа Магнуса «История северных народов», изданной в 1555 году.

Ледяной покров реки, массив ледника или айсберга – это отнюдь не один большой кристалл. Плотная масса льда обычно является поликристаллической, то есть состоит из множества отдельных кристаллов; их не всегда разглядишь, потому что они мелкие и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду, например, весной на реке. Тогда видно, что лёд состоит как бы из «карандашиков», сросшихся вместе, причём все «карандашики» параллельны друг другу и стоят перпендикулярно к поверхности воды; эти «карандашики» и есть отдельные кристаллики льда.


Лёд под микроскопом. Видны очертания сросшихся шестигранных кристалликов и мельчайшие пузырьки воды в тех местах, где началось таяние.

Известно, как опасны для растений весенние или осенние заморозки. Когда температура почвы и воздуха падает ниже нуля, подпочвенные воды и соки растений замерзают, образуя иголочки кристалликов льда. Эти острые иголки рвут нежные ткани растений, листья сморщиваются и чернеют, корни разрушаются.

После морозных ночей по утрам в лесу и в поле часто можно наблюдать, как на поверхности земли вырастает «ледяная трава». Каждый стебелёк такой травы – это прозрачный шестигранный или трёхгранный кристаллик льда. Ледяные иголочки достигают длины в 1-2 сантиметра, а иногда доходят до 10-12 сантиметров. В иных случаях земля оказывается покрытой пластинками льда, лежащими или стоящими торчком. Вырастая из земли, эти кристаллики льда поднимают на своих головках песок, гальку, камешки до 50-100 граммов весом. Льдинки даже выталкивают из земли и уносят вверх маленькие растения. Иногда ледяная корка обволакивает растение, и корень просвечивает сквозь лёд. Бывает и так, что щёточка ледяных иголок поднимает тяжёлый камень, сдвинуть который не под силу одному кристаллику. Искрится и горит радужным блеском хрустальная «ледяная трава», но лишь только пригреют лучи солнца, кристаллики изгибаются навстречу солнцу, падают и быстро тают.

Побывайте в лесу в морозный весенний или осенний день рано утром, когда солнце ещё не успело уничтожить следы ночных заморозков. Деревья и кусты покрыты инеем. На ветках повисли капли льда. Вглядитесь, внутри ледяных капель видны пучки тонких шестигранных иголочек – кристал-ликов льда. Покрытые инеем листья кажутся щётками: как щетинки, стоят на них блестящие шестигранные столбики кристаллов льда. Сказочным богатством кристаллов, хрустальным узором украшен лес.