Тяжелые металлы, попадающие в окружающую среду в результате производственной деятельности человека (промышленность, транспорт и т. д.), являются одними из самых опасных загрязнителей биосферы. Такие элементы, как ртуть, свинец, кадмий, медь, относят к «критической группе веществ - индикаторов стресса окружающей среды». Подсчитано, что ежегодно только металлургические предприятия выбрасывают на поверхность Земли более 150 тыс. т меди; 120 - цинка, около 90 - свинца, 12 - никеля и около 30 т ртути. Эти металлы имеют тенденцию закрепляться в отдельных звеньях биологического круговорота, аккумулироваться в биомассе микроорганизмов и растений и по трофическим цепям попадать в организм животных и человека, отрицательно воздействуя на их жизнедеятельность. С другой стороны, тяжелые металлы определенным образом влияют на экологическую обстановку, подавляя развитие и биологическую активность многих организмов.


Актуальность проблемы воздействия тяжелых металлов на почвенные микроорганизмы определяется тем, что именно в почве сосредоточена большая часть всех процессов минерализации органических остатков, обеспечивающих сопряжение биологического и геологического круговорота. Почва является экологическим узлом связей биосферы, в котором наиболее интенсивно протекает взаимодействие живой и неживой материи. На почве замыкаются процессы обмена веществ между земной корой, гидросферой, атмосферой, обитающими на суше организмами, важное место среди которых занимают почвенные микроорганизмы.
Из данных многолетних наблюдений Росгидромета известно, что по суммарному индексу загрязнения почв тяжелыми металлами, рассчитанному для территорий в пределах пятикилометровой зоны, 2,2 % населенных пунктов России относятся к категории «чрезвычайно опасного загрязнения», 10,1 % - «опасного загрязнения», 6,7 % -«умеренно опасного загрязнения». Более 64 млн. граждан РФ проживают на территориях со сверхнормативным загрязнением атмосферного воздуха.
После экономического спада 90-х гг., в последние 10 лет в России вновь наблюдается рост уровня выбросов загрязняющих веществ от промышленности и транспорта. Темпы утилизации промышленных и бытовых отходов в разы отстают от темпов образования в шламохранилищах; на полигонах и свалках накоплено более 82 млрд. т отходов производства и потребления. Средний показатель использования и обезвреживания отходов в промышленности составляет около 43,3 %, твердые бытовые отходы практически в полном объеме подвергаются прямому захоронению.
Площадь нарушенных земель в России составляет в настоящее время более 1 млн. га. Из них на сельское хозяйство приходится 10 %, цветную металлургию - 10, угольную промышленность - 9, нефтедобывающую - 9, газовую - 7, торфяную - 5, черную металлургию - 4 %. При 51 тыс. га восстановленных земель столько же переходит ежегодно в категорию нарушенных.
Крайне неблагополучная ситуация складывается также и с накоплением вредных веществ в почвах городских и промышленных территорий, поскольку в настоящее время в целом по стране учтено более 100 тыс. опасных производств и объектов (из них порядка 3 тыс. химических), что предопределяет весьма высокие уровни рисков техногенного загрязнения и аварийных явлений с масштабными выбросами высокотоксичных материалов.
Пахотные почвы загрязняются такими элементами, как ртуть, мышьяк, свинец, бор, медь, олово, висмут, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями.
Применение минеральных удобрений в сельском хозяйстве направлено на увеличение содержания в почве элементов питания растений, повышение урожайности сельскохозяйственных культур. Однако вместе с действующим веществом основных элементов питания в почву поступает с удобрениями много различных химических веществ, в т. ч. и тяжелых металлов. Последнее обусловлено наличием токсических примесей в исходном сырье, несовершенством технологий производства и применения удобрений. Так, содержание кадмия в минеральных удобрениях зависит от вида сырья, из которого производят удобрения: в апатитах Кольского полуострова насчитывают незначительное его количество (0,4-0,6 мг/кг), в алжирских фосфоритах - до 6, а в марокканских - более 30 мг/кг. Наличие свинца и мышьяка в кольских апатитах соответственно в 5-12 и 4-15 раз ниже, чем в фосфоритах Алжира и Марокко.
А.Ю. Айдиев с соавт. приводит следующие данные по содержанию тяжелых металлов в минеральных удобрениях (мг/кг): азотные - Pb - 2-27; Zn - 1-42; Cu - 1-15; Cd - 0,3-1,3; Ni - 0,9; фосфорные - соответственно 2-27; 23; 10-17; 2,6; 6,5; калийные - соответственно 196; 182; 186; 0,6; 19,3 и Hg - 0,7 мг/кг, т. е. удобрения могут быть источником загрязнения системы почва - растения. Например, с внесением минеральных удобрений под монокультуру озимой пшеницы на черноземе типичном в дозе N45P60K60 в почву ежегодно поступает Pb - 35133 мг/га, Zn - 29496, Cu - 29982, Cd - 1194, Ni - 5563 мг/га. За многолетний период их сумма может достичь существенных величин.
Распределение в ландшафте поступивших в атмосферу из техногенных источников металлов и металлоидов зависит от расстояния от источника загрязнения, от климатических условий (сила и направление ветров), от рельефа местности, от технологических факторов (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).
Загрязнение почв происходит при поступлении в окружающую среду техногенных соединений металлов и металлоидов в любом фазовом состоянии. В целом на планете преобладает аэрозольное загрязнение. При этом наиболее крупные частицы аэрозолей (>2 мкм) выпадают в непосредственной близости от источника загрязнения (в пределах нескольких километров), формируя зону с максимальной концентрацией поллютантов. Загрязнение прослеживается на расстоянии десятков километров. Размер и форма ареала загрязнения определяется влиянием вышеназванных факторов.
Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте. Связываются они алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Часть их удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов и металлоидов. Их образование в почве обусловлено концентрированием этих элементов на поверхности твердых фаз почв за счет реакций сорбции-десорбции, осаждения-растворения, ионного обмена, образования комплексных соединений. Все эти соединения находятся в равновесии с почвенным раствором и совместно представляют систему почвенных подвижных соединений различных химических элементов. Количество поглощенных элементов и прочность их удерживания почвами зависят от свойств элементов и от химических свойств почв. Влияние этих свойств на поведение металлов и металлоидов имеет и общие, и специфические черты. Концентрация поглощенных элементов определяется присутствием тонкодисперсных глинистых минералов и органических веществ. Увеличение кислотности сопровождается повышением растворимости соединений металлов, но ограничением растворимости соединений металлоидов. Влияние несиликатных соединений железа и алюминия на поглощение поллютантов зависит от кислотно-основных условий в почвах.
В условиях промывного режима потенциальная подвижность металлов и металлоидов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.
Соединения тяжелых металлов, входящие в состав тончайших частиц (микронных и субмикронных) аэрозолей, могут поступать в верхние слои атмосферы и переноситься на большие расстояния, измеряемые тысячами километров, т. е. участвовать в глобальном переносе веществ.
По данным метеорологического синтезирующего центра «Восток», загрязнение территории России свинцом и кадмием других стран более чем в 10 раз превышает загрязнения этих стран поллю-тантами от российских источников, что обусловлено доминированием западно-восточного переноса воздушных масс. Выпадение свинца на европейской территории России (ETP) ежегодно составляет: от источников Украины - около 1100 т, Польши и Белоруссии - 180-190, Германии - более 130 т. Выпадения кадмия на ETP от объектов Украины ежегодно превышают 40 т, Польши - почти 9, Белоруссии - 7, Германии - более 5 т.
Возрастающее загрязнение окружающей среды тяжелыми металлами (TM) представляет угрозу для естественных бикомплексов и агроценозов. Аккумулирующиеся в почве TM извлекаются из нее растениями и по трофическим цепям в возрастающих концентрациях поступают в организм животных. Растения аккумулируют TM не только из почвы, но и из воздуха. В зависимости от вида растений и экологической ситуации у них доминирует влияние загрязнения почвы или воздуха. Поэтому концентрация TM в растениях может превышать или находится ниже их содержания в почве. Особенно много свинца из воздуха (до 95 %) поглощают листовые овощи.
На придорожных территориях значительно загрязняет тяжелыми металлами почву автотранспорт, особенно свинцом. При концентрации его в почве 50 мг/кг примерно десятую часть этого количества накапливают травянистые растения. Также растения активно поглощают цинк, количество которого в них может в несколько раз превосходить его содержание в почве.
Тяжелые металлы существенным образом влияют на численность, видовой состав и жизнедеятельность почвенной микробиоты. Они ингибируют процессы минерализации и синтеза различных веществ в почвах, подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект и могут выступать как мутагенный фактор.
Большинство тяжелых металлов в повышенных концентрациях ингибируют активность ферментов в почвах: амилазы, дегидрогеназы, уреазы, инвертазы, каталазы. На основании этого предложены индексы, аналогичные широко известному показателю ЛД50, в которых действующей считается концентрация загрязнителя, на 50 или 25 % снижающая определенную физиологическую активность, например уменьшение выделения СО2 почвой - ЭкД50, ингибирование активности дегидрогеназы - ЕС50, подавление активности инвертазы на 25 %, снижение активности восстановления трехвалентного железа - ЕС50.
С.В. Левиным с соавт. в качестве индикаторных признаков различных уровней загрязнения почвы тяжелыми металлами в реальных условиях предложено следующее. Низкий уровень загрязнения следует устанавливать по превышению фоновых концентраций тяжелых металлов с помощью принятых методов химического анализа. О среднем уровне загрязнения наиболее четко свидетельствует отсутствие перераспределения членов инициированного микробного сообщества почвы при дополнительном внесении в нее дозы загрязнителя, равной удвоенной концентрации, соответствующей величине зоны гомеостаза незагрязненной почвы. В качестве дополнительных индикаторных признаков тут уместно использовать снижение активности азотфиксации в почве и вариабельности этого процесса, сокращение видового богатства и разнообразия комплекса почвенных микроорганизмов и увеличение в нем доли токсинообразующих форм, эпифитных и пигментированных микроорганизмов. Для индикации высокого уровня загрязнения наиболее целесообразно учитывать реакцию на загрязнение высших растений. Дополнительными признаками могут быть обнаружение в почве в высокой популяционной плотности резистентных к определенному загрязнителю форм микроорганизмов на фоне общего снижения микробиологической активности почв.
В целом по России средняя концентрация всех определяемых TM в почвах не превышает 0,5 ПДК (ОДК). Однако коэффициент вариации по отдельным элементам находится в пределах 69-93 %, а по кадмию превышает 100 %. Среднее содержание свинца в песчаных и супесчаных почвах составляет 6,75 мг/кг. Количество меди, цинка, кадмия находится в пределах 0,5-1,0 ОДК. Ежегодно каждый квадратный метр поверхности почвы поглощает около 6 кг химических веществ (свинца, кадмия, мышьяка, меди, цинка и др.). По степени опасности TM подразделяются на три класса, из которых первый относится к высокоопасным веществам. В него входят Pb, Zn, Cu, As, Se, F, Hg. Второй умеренно опасный класс представляют В, Co, Ni, Mo, Cu, Cr, а третий (малоопасный) - Ba, V, W, Mn, Sr. Сведения об опасных концентрациях TM дает анализ их подвижных форм (табл. 4.11).

Для рекультивации почв, загрязненных тяжелыми металлами, используют разные способы, одним из которых является применение природных цеолитов или сорбентмелиорантов с его участием. Цеолиты обладают высокой селективностью по отношению ко многим тяжелым металлам. Выявлена эффективность этих минералов и цеолитсодержащих пород для связывания тяжелых металлов в почвах и снижения их поступления в растения. Как правило, почвы содержат цеолиты в незначительном количестве, однако в многих странах мира месторождения природных цеолитов широко распространены, и использование их для детоксикации почв может быть экономически не затратным и экологически эффективным, вследствие улучшения агрохимических свойств почв.
Использование 35 и 50 г/кг почвы гейландита Пегасского месторождения (фракция 0,3 мм) на загрязненных черноземах вблизи цинкоплавильного завода под овощные культуры уменьшало содержание подвижных форм цинка и свинца, но при этом ухудшалось азотное и частично фосфорно-калийное питание растений, что снижало их продуктивность.
По данным В.С. Белоусова, внесение в загрязненную тяжелыми металлами почву (10-100-кратное превышение фона) 10-20 т/га цеолитсодержащих пород Хадыженского месторождения (Краснодарский край), содержащих 27-35 % цеолитов (стальбит, гейландит), способствовало снижению накопления TM в растениях: меди и цинка до 5-14 раз, свинца и кадмия - до 2-4 раз. Им также выявлено, что отсутствие явной корреляционной взаимосвязи между адсорбционными свойствами ЦСП и эффектом инактивации металла, выражающееся, например, в относительно меньших показателях снижения содержания свинца в тест-культурах, несмотря на его очень высокое поглощение ЦСП в адсорбционных опытах, вполне ожидаемо и является следствием видовых различий растений в способности накапливать тяжелые металлы.
В вегетационных опытах на дерново-подзолистых почвах (Московская обл.), искусственно загрязненных свинцом в количестве 640 мг Pb/кг, что соответствует 10-кратному ПДК для кислых почв, применение цеолита Сокирницкого месторождения и модифицированного цеолита «клино-фос», содержащего в качестве активных компонентов ионы аммония, калия, магния и фосфора в дозах 0,5 % от массы почвы, оказало разное влияние на агрохимическую характеристику почв, рост и развитие растений. Модифицированный цеолит снижал кислотность почвы, значительно увеличивал содержание доступного растениям азота и фосфора, усиливал активность аммонификации и интенсивность микробиологических процессов, обеспечивал нормальную вегетацию растений салата, тогда как внесение ненасыщенного цеолита не было эффективным.
Ненасыщенный цеолит и модифицированный цеолит «клинофос» после 30 и 90 суток компостирования почвы также не проявили своих сорбционных свойств по отношению к свинцу. Возможно, 90 суток недостаточно для прохождения процесса сорбции свинца цеолитами, о чем свидетельствуют данные В.Г. Минеева с соавт. о проявлении сорбционного эффекта цеолитов только на второй год после их внесения.
При внесении в каштановые почвы семипалатинского Прииртышья измельченного до высокой степени дисперсности цеолита относительное содержание в ней активной минеральной фракции с высокими ионообменными свойствами возрастало, вследствие чего увеличивалась общая емкость поглощения пахотного слоя. Отмечена зависимость между внесенной дозой цеолитов и количеством адсорбированного свинца - максимальная доза приводила к наибольшему поглощению свинца. Влияние цеолитов на процесс адсорбции существенно зависело от его помола. Так, адсорбция ионов свинца при внесении цеолитов помола 2 мм в супесчаной почве возрастала в среднем на 3,0; 6,0 и 8,0 %; в среднесуглинистой -на 5,0; 8,0 и 11,0 %; в солонцеватой среднесуглинистой - на 2,0; 4,0 и 8,0 % соответственно. При использовании цеолитов помола 0,2 мм увеличение количества поглощенного свинца составляло: в супесчаной почве в среднем 17, 19 и 21 %, в среднесуглинистой - 21, 23 и 26 %, в солонцеватой и среднесуглинистой - 21, 23 и 25 % соответственно.
А.М. Абдуажитовой на каштановых почвах семипалатинского Прииртышья также получены положительные результаты влияния природных цеолитов на экологическую устойчивость почв и их поглотительную способность по отношению к свинцу, снижению его фитотоксичности.
По данным М.С. Панина и Т.И. Гулькиной, при изучении влияния различных агрохимикатов на сорбцию ионов меди почвами этого региона установлено, что внесение органических удобрений и цеолитов способствовало повышению сорбционной способности почв.
В карбонатной легкосуглинистой почве, загрязненной Pb - продуктом сгорания этилированного автомобильного топлива, 47 % этого элемента обнаружено во фракции песка. При попадании солей Pb(II) в незагрязненную глинистую почву и песчанистый тяжелый суглинок в этой фракции оказывается только 5-12 % Pb. Внесение цеолита (клиноптилолита) снижает содержание Pb в жидкой фазе почв, что должно приводить к уменьшению его доступности для растений. Однако цеолит не позволяет перевести металл из пылевой и глинистой фракции в песчаную, чтобы предотвратить его ветровой вынос в атмосферу с пылью.
Природные цеолиты используются в экологически безопасных технологиях мелиорации солонцовых почв, уменьшая содержание водорастворимого стронция в почве на 15-75 % при внесении их с фосфогипсом, а также снижают концентрации тяжелых металлов. При выращивании ячменя, кукурузы и внесении смеси фосфогипса и клиноптиолита негативные явления, вызванные фосфогипсом, устранялись, что положительно влияло на рост, развитие и урожайность культур.
В вегетационном опыте на загрязненных почвах с тест-растением ячменем изучали влияние цеолитов на фосфатную буферность на фоне внесения в почву 5, 10 и 20 мг Р/100 г почвы. На контроле отмечена высокая интенсивность поглощения P и низкая фосфатная буферность (РВС{р}) при малой дозе P-удобрения. NH-и Са-цеолиты снижали PBC {р}, а интенсивность Н2РО4 не изменялась до конца вегетации растений. Влияние мелиорантов усиливалось с повышением содержания P в почве, в результате чего величина потенциала PBC{р} возросла двукратно, что позитивно отражалось на плодородии почвы. Цеолитные мелиоранты гармонизируют удобрение растений минеральным Р, при этом активируются их природные барьеры в т. н. Zn-акклиматизации; в итоге аккумуляция токсикантов в тест-растениях снижалась.
Возделывание плодовых и ягодных культур предусматривает регулярные обработки защитными препаратами, содержащими тяжелые металлы. Учитывая, что эти культуры произрастают на одном месте в течение длительного времени (десятки лет) в почвах садов, как правило, накапливаются тяжелые металлы, отрицательно влияющие на качество ягодной продукции. Многолетними исследованиями установлено, что, например, в серой лесной почве под ягодниками валовое содержание TM превысило регионально-фоновую концентрацию в 2 раза для Pb и Ni, в 3 раза для Zn, в 6 раз для Cu.
Применение цеолитсодержащих пород Хотынецкого месторождения для снижения загрязнения ягод черной смородины, малины и крыжовника является экологически и экономически эффективным мероприятием.
В работе Л.И. Леонтьевой выявлена следующая особенность, которая, на наш взгляд, очень значима. Автором установлено, что максимальное снижение содержания подвижных форм P и Ni в серой лесной почве обеспечивается внесением цеолитсодержащей породы в дозе 8 и 16 т/га, а Zn и Cu - 24 т/га, т. е. наблюдается дифференцированное отношение элемента к количеству сорбента.
Создание удобрительных композиций и грунтов из отходов производства требует особого контроля, в частности нормирования содержания тяжелых металлов. Поэтому применение цеолитов здесь считается эффективным приемом. Например, при изучении особенностей роста и развития астры на почвогрунтах, созданных на основе гумусового слоя чернозема оподзоленного по схеме: контроль, почвогрунт+100 г/м шлака; почвогрунт+100 г/м2 шлака+100 г/м2 цеолита; почвогрунт+100 г/м2 цеолита; почвогрунт+ 200 г/м2 цеолита; почвогрунт+осадок сточных вод 100 г/м"+цеолит 200 г/м2; почвогрунт+осадок 100 г/м2, установлено, что лучшим для роста астр был почвогрунт с осадком сточных вод и цеолитом.
Оценивая последействие создания грунтов из цеолитов, осадка сточных вод и шлаковых отсевов, определяли их влияние на концентрацию свинца, кадмия, хрома, цинка и меди. Если в контроле количество подвижного свинца составило 13,7 % от валового содержания в почве, то при внесении шлака оно возросло до 15,1 %. Применение органических веществ осадка сточных вод снизило содержание подвижного свинца до 12,2 %. Наибольший эффект закрепления свинца в малоподвижные формы оказывал цеолит, снижая концентрацию подвижных форм Pb до 8,3 %. При совместном действии осадка сточных вод и цеолита при применении шлаков количество подвижного свинца уменьшалось на 4,2 %. На закрепление кадмия положительное действие оказывал как цеолит, так и осадок сточных вод. В снижении подвижности меди и цинка в почвогрунтах в большей степени проявил себя цеолит и его сочетание с органическими веществами осадка сточных вод. Органическое вещество осадка сточных вод способствовало повышению подвижности никеля и марганца.
Внесение осадков сточных вод Люберецкой станции аэрации в супесчаные дерново-подзолистые почвы привело к их загрязнению TM. Коэффициенты накопления TM в загрязненных OCB почвах по подвижным соединениям были выше в 3-10 раз, чем по валовому содержанию, по сравнению с почвами незагрязненными, что свидетельствовало о высокой активности внесенных с осадками TM и доступности их для растений. Максимальное снижение подвижности TM (на 20-25 % от исходного уровня) было отмечено при внесении торфонавозной смеси, что обусловлено образованием прочных комплексов TM с органическим веществом. Железная руда, наименее эффективная как мелиорант, вызывала уменьшение содержания подвижных соединений металлов на 5-10 %. Цеолит по действию в качестве мелиоранта занимал промежуточное положение. Использованные в опытах мелиоранты снижали подвижность Cd, Zn, Cu и Cr в среднем на 10-20 %. Таким образом, применение мелиорантов было эффективно при содержании TM в почвах, близком к ПДК или превышающем допустимые концентрации не более чем на 10-20 %. Внесение мелиорантов в загрязненные почвы снижало поступление их в растения на 15-20 %.
Аллювиальные дерновые почвы Западного Забайкалья по степени обеспеченности подвижными формами микроэлементов, определенных в аммонийно-ацетатной вытяжке, относятся к высокообеспеченным по марганцу, среднеобеспеченным - по цинку и меди, очень высокообеспеченным - по кобальту. Они не нуждаются в применении микроудобрений, поэтому внесение осадков сточных вод может привести к загрязнению почвы токсичными элементами и требует эколого-геохимической оценки.
Л.Л. Убугуновым с соавт. было изучено влияние осадка сточных вод (ОСВ), морденитсодержащих туфов Myxop-Tалинского месторождения (MT) и минеральных удобрений на содержание подвижных форм тяжелых металлов в аллювиальных дерновых почвах. Исследования проводились по следующей схеме: 1) контроль; 2) N60P60K60 - фон; 3) OCB - 15 т/га; 4) MT - 15 т/га; 5) фон+ОСВ - 15 т/га; 6) фон+МТ 15 т/га; 7) OCB 7,5 т/га+МТ 7,5 т/га; 8) OCB Ют/га+МТ 5 т/га; 9) фон+ОСВ 7,5 т/га; 10) фон+ОСВ 10 т/га+МТ 5 т/га. Минеральные удобрения вносили ежегодно, ОСВ, MT и их смеси - один раз в 3 года.
Для оценки интенсивности накопления TM в почве использованы геохимические показатели: коэффициент концентрации - Kc и суммарный показатель загрязнения - Zc, определяемые по формулам:

где С - концентрация элемента в опытном варианте, Сf - концентрация элемента на контроле;

Zc = ΣKc - (n-1),


где n - число элементов с Kc ≥ 1,0.
Полученные результаты выявили неоднозначное влияние минеральных удобрений, ОСВ, морденитсодержащих туфов и их смесей на содержание подвижных микроэлементов в слое почвы 0-20 см, хотя следует отметить, что во всех вариантах опыта их количество не превысило уровня ПДК (табл. 4.12).
Применение практически всех видов удобрений, за исключением MT и MT+NPK, привело к увеличению содержания марганца. При внесении в почву OCB совместно с минеральными удобрениями Kc достигал максимальной величины (1,24). Более существенно происходило накопление цинка в почве: Kc при внесении OCB достигал значений 1,85-2,27; минеральных удобрений и смесей ОСВ+МТ -1,13-1,27; с использованием же цеолитов он уменьшался до минимального значения - 1,00-1,07. Накопления меди и кадмия в почве не происходило, их содержание во всех вариантах опыта в целом было на уровне или чуть ниже контрольного. Отмечено лишь незначительное повышение содержания Cu (Kc - 1,05-1,11) в варианте с применением OCB как в чистом виде (вар. 3), так и на фоне NPK (вар. 5) и Cd (Kc - 1,13) при внесении в почву минеральных удобрений (вар. 2) и OCB на их фоне (вар. 5). Содержание кобальта несколько повышалось при использовании всех видов удобрений (максимально - вар. 2, Kc -1,30), за исключением вариантов с применением цеолитов. Максимальная концентрация никеля (Kc - 1,13-1,22) и свинца (Kc - 1,33) отмечена при внесении в почву OCB и OCB на фоне NPK (вар. 3, 5), использование же OCB совместно с цеолитами (вар. 7, 8) снижало данный показатель (Kc - 1,04 - 1,08).

По величине показателя суммарного загрязнения тяжелыми металлами слоя почвы 0-20 см (табл. 4.12) виды удобрений расположились в следующий ранжированный ряд (в скобках - значение Zc): OCB+NPK (3,52) → ОСВ (2,68) - NPK (1,84) → 10СВ+МТ+NPК (1,66-1,64) → OСВ+МТ, вар. 8 (1,52) → OСВ+МТ вар. 7 (1,40) → MT+NPK (1,12). Уровень суммарного загрязнения почв тяжелыми металлами при внесении в почву удобрений был в целом незначительным, по сравнению с контролем (Zc<10), тем не менее тенденция накопления TM при использовании осадков сточных вод четко обозначилась, как и эффективное действие морденитсодержащих туфов в снижении содержания подвижных форм тяжелых металлов в почве, а также в повышении качества клубней картофеля.
Л.В. Кирийчевой и И.В. Глазуновой были сформулированы следующие основные требования к компонентному составу создаваемых сорбентмелиорантов: высокая емкость поглощения композиции, одновременное присутствие органической и минеральной составляющих в композиции, физиологическая нейтральность (pH 6,0-7,5), способность композиции адсорбировать подвижные формы TM, переводя их в неподвижные формы, повышенная гидроаккумулирующая способность композиции, наличие в ней структурообразователя, свойство лиофильности и коагулянта, высокая удельная поверхность, доступность исходного сырья и низкая его стоимость, использование (утилизация) сырьевых отходов в составе сорбента, технологичность изготовления сорбента, безвредность и экологическая нейтральность.
Из 20 композиций сорбентов природного происхождения авторами выявлена наиболее эффективная, содержащая 65 % сапропеля, 25 % цеолита и 10 % глинозема. Этот сорбент-мелиорант был запатентован и получил название «Сорбекс» (патент РФ № 2049107 «Состав для мелиорации почв»).
Механизм действия сорбентмелиоранта при внесении его в почву весьма сложен и включает в себя процессы различной физико-химической природы: хемосорбцию (поглощение с образованием труднорастворимых соединений TM); механическую абсорбцию (объемное поглощение крупных молекул) и ионно-обменные процессы (замещение в почвенно-поглощающем комплексе (ППК) ионов TM на нетоксичные ионы). Высокая поглотительная способность «Сорбекса» обусловлена регламентируемой величиной емкости катионного обмена, тонкодисперсностью строения (большая удельная поверхность, до 160 м2), а также стабилизирующим действием на показатель pH в зависимости от характера загрязнения и реакции среды с целью предотвращения десорбции наиболее опасных поллютантов.
При наличии почвенной влаги в сорбенте идет частичная диссоциация и гидролиз сульфата алюминия и гуминовых веществ, входящих в состав органического вещества сапропеля. Электролитическая диссоциация: A12(SО4)3⇔2A13++3SО4в2-; А13++Н2O = АlОН2+ = OН; (R* -СОО)2 Ca ⇔ R - COO-+R - СООСа+ (R - алифатический радикал гуминовых веществ); R - COO+H2O ⇔ R - СООН+ОН0. Полученные в результате гидролиза катионы являются сорбентами анионных форм поллютантов, например мышьяка (V), образуя нерастворимые соли или устойчивые органо-минеральные соединения: Al3+ - AsO4в3- = AlAsO4; 3R-CООCa++AsO4в3- = (R-CООCa)3 AsO4.
Более распространенные катионные формы, характерные для TM, образуют прочные хелатные комплексы с полифенольными группами гуминовых веществ или сорбируются анионами, образованными при диссоциации карбоксилов, фенольных гидроксилов - функциональных групп гуминовых веществ сапропеля в соответствии с представленными реакциями: 2R - COO + Pb2+ = (R - СОО)2 Pb; 2Аr - O+ Сu2+ =(Аr - O)2Сu (Ar ароматический радикал гуминовых веществ). Поскольку органическое вещество сапропеля нерастворимо в воде, то TM переходят в неподвижные формы в виде прочных органоминеральных комплексов. Сульфат-анионы осаждают катионы, в основном, бария или свинца: 2Pb2+ + 3SO4в2- = Pb3(SO4)2.
На анионном комплексе гуминовых веществ сапропеля сорбируются все двух- и трехвалентные катионы TM, а сульфат-нон иммобилизует ионы свинца и бария. При поливалентном загрязнении TM идет конкуренция между катионами и преимущественно сорбируются катионы с более высоким электродным потенциалом, согласно электрохимическому ряду напряжений металлов, поэтому сорбции катионов кадмия будет препятствовать наличие в растворе ионов никеля, меди, свинца и кобальта.
Механическая поглотительная способность «Сорбекса» обеспечивается тонкодисперсностью и значительной удельной поверхностью. Загрязняющие вещества, имеющие крупные молекулы, такие как пестициды, отходы нефтепродуктов и т. п., механически задерживаются в сорбционных ловушках.
Наилучший результат был достигнут при внесении сорбента в почву, что позволило снизить потребление TM растениями овса из почвы: Ni - в 7,5 раза; Cu - в 1,5; Zn - в 1,9; P - в 2,4; Fe - в 4,4; Mn -в 5 раз.
Для оценки влияния «Сорбекса» на поступление TM в растительную продукцию в зависимости от суммарного загрязнения почвы А.В. Ильинским были проведены вегетационные и полевые опыты. В вегетационном опыте изучали влияние «Сорбекса» на содержание в фитомассе овса при разных уровнях загрязнения оподзоленного чернозема Zn, Cu, Pb и Cd по схеме (табл. 4.13).

Почву загрязняли путем добавления химически чистых водорастворимых солей и тщательно перемешивали, затем подвергали экспозиции в течение 7 суток. Расчет доз внесения солей TM осуществлялся с учетом фоновых концентраций. В опыте использовали вегетационные сосуды площадью 364 см2 с массой почвы в каждом сосуде 7 кг.
Почва имела следующие агрохимические показатели рНKCl = 5,1, гумус - 5,7 % (по Тюрину), фосфор - 23,5 мг/100 г и калия 19,2 мг/100 г (по Кирсанову). Фоновое содержание подвижных (1М HNO3) форм Zn, Cu, Pb, Cd - 4,37; 3,34; 3,0; 0,15 мг/кг соответственно. Продолжительность эксперимента 2,5 месяца.
Для поддержания оптимальной влажности 0,8НВ периодически проводили поливы чистой водой.
Урожайность фитомассы овса (рис. 4.10) в вариантах без внесения «Сорбэкса» при чрезвычайно опасном загрязнении снижается более чем в 2 раза. Применение «Сорбекса» из расчета 3,3 кг/м способствовало повышению фитомассы, по сравнению с контролем, в 2 и более раз (рис 4.10), а также значительному снижению потребления Cu, Zn, Pb растениями. Вместе с тем произошло незначительное увеличение содержания Cd в фитомассе овса (табл. 4.14), что соответствует теоретическим предпосылкам о механизме сорбции.

Таким образом, внесение сорбент-мелиорантов в загрязненную почву позволяет не только снизить поступление тяжелых металлов в растения, улучшить агрохимические свойства деградированных черноземов, но и повысить продуктивность сельскохозяйственных культур.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Промышленная экология и безопасность»

«Проблемы загрязнения почв тяжелыми металлами и возможные пути их решения»

Выполнил:

Фомин А., Мельников Д., Ламажап А.

студенты гр. ТБ-161

Проверил:

Холкин Е.Г., к.т.н

  • Введение
  • Заключение
  • Список литературы
  • Введение
  • Почва является бесценным природным богатством, обеспечивающим человека необходимыми продовольственными ресурсами. Ничто не может заменить почвенный покров: без этого колоссального природного объекта невозможна жизнь на земле. Вместе с тем сегодня можно наблюдать неправильное использование почвы, что приводит к росту её загрязнения и, как следствие, снижению её плодородных свойств. Уже сейчас человечество должно серьёзно задуматься над проблемой загрязнения почвы и принять необходимые меры по её защите.
  • Почва является индикатором общей техногенной обстановки. Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами. К группе тяжелых металлов относятся все цветные металлы с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.
  • Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью. Источники загрязнения тяжелыми металлами -- это промышленные предприятия.
  • Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.
  • Цель работы - рассмотреть проблемы загрязнения почв тяжелыми металлами и возможные пути их решения.
  • 1. Загрязнение почв тяжелыми металлами
  • Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах .
  • Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан.
  • Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.
  • Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.
  • В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов .
  • Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).
  • В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10-12), концентрация Cd, V, Sb - в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag - в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).
  • Таблица 1. Основные техногенные источники тяжелых металлов
    • Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.
    • Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd .
    • Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).
    • Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда, при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10-40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .
    • Таблица 2. Зоны загрязнения почв вокруг точечных источников загрязнения
    • Расстояние от источника загрязнения в км

      Превышение содержания ТМ по отношению к фоновому

      Охранная зона предприятия

      • Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.
      • 2. Миграция тяжелых металлов в почвенном профиле
      • Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте, где они связываются алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Состав и количество удерживаемых в почве элементов зависят от содержания и состава гумуса, кислотно-основных и окислительно-восстановительных условий, сорбционной способности, интенсивности биологического поглощения. Часть тяжелых металлов удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов .
      • В пределах почвенного профиля техногенный поток веществ встречает ряд почвенно-геохимических барьеров. К ним относятся карбонатные, гипсовые, иллювиальные горизонты (иллювиально-железисто-гумусовые). Часть высокотоксичных элементов может переходить в труднодоступные для растений соединения, другие элементы, мобильные в данной почвенно-геохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Подвижность элементов в значительной степени зависит от кислотно-основных и окислительно-восстановительных условий в почвах. В нейтральных почвах подвижны соединения Zn, V, As, Se, которые могут выщелачиваться при сезонном промачивании почв.
      • Накопление подвижных, особо опасных для организмов соединений элементов зависит от водного и воздушного режимов почв: наименьшая аккумуляция их наблюдается в водопроницаемых почвах промывного режима, увеличивается она в почвах с непромывным режимом и максимальна в почвах с выпотным режимом. При испарительной концентрации и щелочной реакции в почве могут накапливаться Se, As, V в легкодоступной форме, а в условиях восстановительной среды - Hg в виде метилированных соединений.
      • Однако следует иметь в виду, что в условиях промывного режима потенциальная подвижность металлов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.
      • В кислых почвах с преобладанием окислительных условий (почвы подзолистого ряда, хорошо дренированные) такие тяжелые металлы, как Cd и Hg, образуют легкоподвижные формы. Напротив, Pb, As, Se образуют малоподвижные соединения, способные накапливаться в гумусовых и иллювиальных горизонтах и негативно влиять на состояние почвенной биоты. Если в составе загрязняющих веществ присутствует S, в восстановительных условиях создается вторичная сероводородная среда и многие металлы образуют нерастворимые или слаборастворимые сульфиды.
      • В заболоченных почвах Mo, V, As, Se присутствуют в малоподвижных формах. Значительная часть элементов в кислых заболоченных почвах присутствует в относительно подвижных и опасных для живого вещества формах; таковы соединения Pb, Cr, Ni, Co, Cu, Zn, Cd и Hg. В слабокислых и нейтральных почвах с хорошей аэрацией образуются труднорастворимые соединения Pb, особенно при известковании. В нейтральных почвах подвижны соединения Zn, V, As, Se, а Cd и Hg могут задерживаться в гумусовом и иллювиальных горизонтах. По мере возрастания щелочности опасность загрязнения почв перечисленными элементами увеличивается .
      • 3. Направления борьбы с загрязнением почв тяжелыми металлами
      • 3.1 Проведение почвенного мониторинга состояния почвы
      • Среди контролируемых показателей состояния почв различают две группы: педохимические и биохимические. К педохимическим показателям относят те свойства почв, изменение которых может быть вызвано загрязняющими веществами и которые могут отрицательно влиять на живые организмы. К педохимическим относятся показатели важнейших химических свойств почв: гумусного состояния, кислотно-основных и катионнообменных свойств, в отдельных случаях окислительно-восстановительных свойств почв.
      • К биохимическим относят показатели, характеризующие аккумуляцию в почвах загрязняющих веществ и их непосредственного негативного влияния на живые организмы. К группе биохимических показателей относятся: 1) общее содержание загрязняющих веществ, 2) содержание соединений загрязняющих веществ, обладающих реальной и потенциальной подвижностью .
      • Показатели общего (валового) содержания контролируемых элементов как природного, так и техногенного происхождения характеризуют их запас в почвах (табл. 3). Определение общего содержания химических элементов в почвах трудоемко и требует полного разложения алюмосиликатов, удерживающих значительную часть соединений, особенно в незагрязненных почвах (сплавление пробы, разложение кислотами с участием плавиковой кислоты).
      • При оценке состояния загрязненных почв общее содержание химических элементов является показателем менее информативным. Существует достаточно много данных о природном уровне общего содержания тяжелых металлов (Hg, Pb, Cd, As, Zn, Cu и др.) в почвах мира, в верхних горизонтах разных типов почв России. Кроме того, установлены особенности регионального фонового содержания многих элементов, а также выявлены закономерности изменения их количества в зависимости от гранулометрического состава, гумусированности почв, реакции среды, содержания элементов в почвообразующих породах и других факторов.
      • Таблица 3. Фоновое содержание валовых форм соединений тяжелых металлов в почвах (мг/кг)
      • Элемент, мг/кг

        Дерново-подзолистые песчаные и супесчаные

        Дерново-подзолистые суглинистые и глинистые

        Серые лесные

        Черноземы

        Каштановые

        • С расширением экологического контроля состояния почв широко стали применять методы определения содержания кислоторастворимых (1 н. HCI, 1 н. HNO3) соединений ТМ. Нередко им присваивают название «условноваловое содержание ТМ». Применение в качестве реагентов разбавленных растворов минеральных кислот не обеспечивает полного разложения пробы, но позволяет перевести в раствор основную часть соединений химических элементов техногенного происхождения.
        • К подвижным формам ТМ относят элементы и соединения почвенного раствора и твердой фазы почвы, которые находятся в состоянии динамического равновесия с химическими элементами почвенного раствора. Для определения подвижных ТМ в почвах в качестве экстрагента применяют слабо солевые растворы, с ионной силой, близкой к ионной силе природных почвенных растворов: (0,01-0,05 М СаCI2, Ca(NO3)2, KNO3). Содержание потенциально подвижных соединений контролируемых элементов в почвах определяют в вытяжке 1 н. NH4CH3COO при разных значениях рН. Используют этот экстрагент и с добавлением комплексообразователей (0,02-1,0 М ЭДТА) .
        • Для анализа чаще всего отбирают верхние слои почвы (0-10 см), иногда анализируется распределение загрязняющих веществ в почвенном профиле. Верхние горизонты играют роль геохимического барьера на пути потока веществ, поступающих из атмосферы. В условиях промывного водного режима загрязняющие вещества могут проникать вглубь и накапливаться в иллювиальных горизонтах, которые также служат геохимическими барьерами.
        • тяжелый метал рекультивация земля
        • 3.2 Рекультивация земель, загрязненных тяжелыми металлами
        • Загрязнение почв тяжелыми металлами приводит к образованию кислой или щелочной реакции почвенной среды, снижению обменной емкости катионов, потери питательных веществ, к изменению плотности, пористости, отражательной способности, к развитию эрозии, дефляции, к сокращению видового состава растительности, ее угнетению или к полной гибели.
        • Прежде, чем начать рекультивацию таких земель необходимо установить источник и причины загрязнения, провести мероприятия по снижению выбросов, локализации или ликвидации источника загрязнения. Только при таких условиях может быть достигнута высокая эффективность рекультивационных работ.
        • Ориентиром для разработки состава работ по рекультивации земель в первую очередь служит приоритетное вещество, вызывающее ухудшение экологического состояния почв и качество сельскохозяйственной продукции, а ожидаемая подвижность других опасных веществ должна регулируется специальными или комплексными мероприятиями.
        • Рекультивация земель, загрязненных тяжелыми металлами, осуществляется с использованием следующих способов:
        • 1) Культивирование устойчивых к загрязнению культурных и дикорастущих растений. На загрязненных землях сельскохозяйственного назначения проводится реорганизация и переориентация сельскохозяйственного производства за счет введения новой структуры растениеводства, обеспечивающей получение качественной продукции. В зонах с чрезвычайной экологической ситуацией, имеющих многоэлементный набор загрязнителей, целесообразно переходить с производства овощей на зерно-кормовые севообороты и развитие животноводства с особым режимом содержания животных, например, со стойловым и кормлением разбавленными кормами или с выгоном на загрязненные и чистые луга .
        • Переход на другие сельскохозяйственные культуры определяется различной их отзывчивостью на уровень содержания металлов в почве, причем эта отзывчивость у растений проявляется как в зависимости от вида, сорта, так и по распределению металлов в вегетативных и регенеративных органах. Различное накопление тяжелых металлов в растениях вызвано существованием биологических барьеров в системе: почва - корень - стебель (листья) - регенеративный орган. Обычно наибольшее накопление тяжелых металлов наблюдается в вегетативных органах, наименьшее - в регенеративных, например, при содержании в почве 800мг/кг свинца в соломе ржи обнаружено 9 мг/кг, а в зерне - 0,9мг/кг. Отзывчивость растений на отдельные металлы можно проследить на примере кадмия, наиболее чувствительными к избытку кадмия являются соя, салат, шпинат, а устойчивыми - рис, томат, капуста.
        • С учетом конкретных условий на почвах, загрязненных тяжелыми металлами, можно выращивать следующие устойчивые культуры: зерновые колосовые, злаковые травы, картофель, капусту, томаты, хлопчатник, сахарную свеклу.
        • 2) Рекультивация почв с помощью растений (фиторекультивация), способных накапливать тяжелые металлы в вегетативных органах. Установлено, что дерево за вегетационный период вдоль автомобильной дороги способно накапливать в себе количество свинца, равное его содержанию в 130 кг бензина, поэтому в населенных пунктах с загрязненными районами листовой опад целесообразно собирать и утилизировать. Для очистки почв от цинка, свинца и кадмия необходимо выращивать большой горец, от свинца и хрома - горчицу, от никеля - гречиху и т.д. (табл. 5), при загрязнение радиоактивными изотопами можно использовать вику, горох, люцерну, махорку.
        • 3) Регулирование подвижности тяжелых металлов в почве. Поглощение тяжелых металлов растениями зависит от содержания их подвижных форм в почве. Существование подвижных форм определяется свойствами и плодородием почв, биогеохимическими процессами, интенсивностью и объемами поступления тяжелых металлов в почву, выносом растениями. Поведение тяжелых металлов в почве и способы управления их содержанием вытекают из теории геохимических барьеров, а рекультивация загрязненных почв сводится к созданию дополнительных барьеров, управлению существующими барьерами или к ослаблению некоторых из них.
        • Почвы, тяжелые по механическому составу и имеющие высокое плодородие, содержат меньше подвижных форм тяжелых металлов, чем почвы легкие и малопродуктивные. Многие из металлов, относящиеся к первому классу опасности, в нейтральной почвенной среде образуют трудно растворимые соединения, а в кислой - легко растворимые. Кадмий наиболее подвижен в кислой среде и слабо подвижен в нейтральной и щелочной среде. К подвижным в кислой среде относятся химическим соединениям, содержащие катионы Zn,Сu, Pb, Cd, Sr, Mn, Ni, Coи др. К подвижным в нейтральной и щелочной среде - Mo, Cr, As, V, Se .
        • В равных условиях наименьшей растворимостью обладают фосфаты и сульфиды тяжелых металлов, из карбонатных соединений меньшую растворимость имеют соединения ртути, свинца и кадмия. Гидроксиды тяжелых металлов образуют трудно растворимые формы в слабокислых и нейтральных средах, исключением являются гидроксид Fe (рН = 2,5) и Al (рН = 4,1).
        • На подвижность оказывают влияние органические вещества с малой молекулярной массой, фульвокислоты и гуминовые кислоты, так количество подвижной меди изменяется от 4,5 мг/кг до 2,0 мг/кг при изменении содержания гумуса в почве от 0,6 до 6,5%. Адсорбция свинца почвой при изменении содержания в ней гумуса от 2,5% до 7,0% возрастает с 5 мкг/кг до 20 мкг/кг.
        • Внесение в почву жидкого навоза и слабо разложившихся органических веществ повышает подвижность тяжелых металлов за счет образования низкомолекулярных водорастворимых комплексов. Поступление тяжелых металлов в растения по степени их подвижности: кадмий - свинец - цинк - медь.
        • Для регулирования подвижности соединений тяжелых металлов в почве используют известкование, гипсование, внесение органических и минеральных удобрений, землевание (внесение глины или песка).
        • При рекультивации земель, загрязненных тяжелыми металлами, значительное внимание уделяется поддержанию и образованию в почве труднорастворимых соединений. Для этого в дополнение к приведенным способам используют искусственные и природные адсорбенты. К природным относятся торф, мох, черноземные почвы, сапропель, бентонитовые и бентонитоподобные глины, глауконитовые пески, клиноптилолиты, опоки, трепелы, диатомиты. Искусственные адсорбенты создаются в результате активации или смешения природных адсорбентов, например, активированный уголь, алюмосиликатные и железо-алюмосиликатные адсорбенты, углеалюмогели, адсорбент «СОРБЭКС», ионообменные смолы, полистирол.
        • Избирательная способность адсорбентов может быть ориентирована на определенные металлы, например, при использование адсорбента «МЕРКАПТО-8-ТРИАЗИН» кадмий, свинец, ртуть и никель переходят в недоступные для растений соединения (опыт Японии, Франции, Германии и других стран), применение клиноптололита значительно снижает поступление свинца, хрома, кадмия, меди, цинка в растения и т.д..
        • 4) Регулирование соотношений химических элементов в почве. В основе этого способа лежит антагонизм и синергизм химических элементов, т.е. когда один элемент препятствует или способствует поступлению другого в растение, например, цинк препятствует поступлению ртути, а избыток фосфора приводит к снижению токсичности цинка, кадмия, свинца и меди, присутствие кальция может создать для одних металлов антагонистические, а для других синергические условия, в плодородной почве цинк и кадмий противостоят закреплению меди и свинца, а в малоплодородной почве процесс может развиваться в обратном направлении.
        • 5) Создание рекультивационного слоя, замена или разбавление загрязненного слоя почвы может проводиться по многослойной схеме, а также путем нанесения одного слоя почвы на предварительно экранированную или неэкранированную загрязненную поверхность. Разбавление загрязненного слоя проводится землеванием чистой почвы с последующим смешением, разбавление может также проводится с помощью глубокой вспашки, когда верхний загрязненный слой перемешивается с чистым нижним слоем. Применяют снятие загрязненного слоя и его переработку, или снятие загрязненной почвы с последующей очисткой и возвращением обратно, но обычно такие операции проводят на небольших участках, они являются дорогостоящим способом рекультивации .
        • Для рекультивации больших территорий, включающих селитебные и рекреационные зоны населенных пунктов, сельскохозяйственные угодий, испытывающие длительное загрязнение, можно применить следующую комплексную схему:
        • - существенное сокращение выбросов предприятиями (технологический барьер);
        • - строгое дозирование химических средств защиты растений, оптимальное регулирование питательного и кислотного режимов почвы (технологический барьер);
        • - управление водными миграционными потоками за счет организации поверхностного стока, создания ливневой канализации, дренажных с последующей очисткой стоков (механический барьер).
        • - усиление сорбционного барьера почвенного слоя, необходимого для существенного уменьшения количества подвижных соединений тяжелых металлов, которые поступают в растения и загрязняют продукцию, в тоже время общее количество металлов в почве может не только не уменьшается, но даже расти за счет уменьшения подвижности.
        • - дополнительно к этому - минимизация инфильтрационной составляющей водного режима почвенного слоя в условиях полива зеленых насаждений, газонов, огородных, сельскохозяйственных и других культур, т.е. выполнение мероприятий, направленных, с одной стороны, на некоторое ослабление гидрофизического барьера, но с другой - необходимых для закрепления эффекта от усиления сорбционного барьера.
        • Уменьшение количества подвижных соединений при внесении сорбента фактически ослабляет перераспределение общего содержания металлов по почвенному профилю под действием нисходящих токов влаги и приводит к избыточной аккумуляции металлов в самом верхнем слое. Ослабление гидрофизического барьера путем регулируемой инфильтрации способствует перераспределению металлов, так как происходит разбавление почвенного раствора и одновременное уменьшение трудно растворимых соединений за счет десорбции.
        • Такое мероприятие можно считать возможным, поскольку при значительном загрязнении почв и грунтовых вод токсичными веществами необходимо создавать инженерно-экологическую постоянно действующую систему управления потоками вещества в компонентах: почва - грунтовые воды. Подобная система обеспечивает рекультивацию загрязненных почв и грунтовых вод, а также служит барьером для поступления техногенных продуктов в реки и другие места разгрузки подземных стоков. Для количественного обоснования этих мероприятий используются математические модели передвижения влаги, а также тяжелых металлов с учетом их сорбции и отбора корнями растений.
        • Заключение
        • Актуальность проблемы воздействия тяжелых металлов на почвенные микроорганизмы определяется тем, что именно в почве сосредоточена большая часть всех процессов минерализации органических остатков, обеспечивающих сопряжение биологического и геологического круговорота. Почва является экологическим узлом связей биосферы, в котором наиболее интенсивно протекает взаимодействие живой и неживой материи. На почве замыкаются процессы обмена веществ между земной корой, гидросферой, атмосферой, обитающими на суше организмами, важное место среди которых занимают почвенные микроорганизмы.
        • Возрастающее загрязнение окружающей среды тяжелыми металлами (TM) представляет угрозу для естественных бикомплексов и агроценозов. Аккумулирующиеся в почве TM извлекаются из нее растениями и по трофическим цепям в возрастающих концентрациях поступают в организм животных. Растения аккумулируют TM не только из почвы, но и из воздуха. В зависимости от вида растений и экологической ситуации у них доминирует влияние загрязнения почвы или воздуха. Поэтому концентрация TM в растениях может превышать или находится ниже их содержания в почве. Особенно много свинца из воздуха (до 95 %) поглощают листовые овощи.
        • На придорожных территориях значительно загрязняет тяжелыми металлами почву автотранспорт, особенно свинцом. При концентрации его в почве 50 мг/кг примерно десятую часть этого количества накапливают травянистые растения. Также растения активно поглощают цинк, количество которого в них может в несколько раз превосходить его содержание в почве.
        • Тяжелые металлы существенным образом влияют на численность, видовой состав и жизнедеятельность почвенной микробиоты. Они ингибируют процессы минерализации и синтеза различных веществ в почвах, подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект и могут выступать как мутагенный фактор.
        • Список литературы
        • 1. Вредные химические вещества: неорганические соединения элементов I-IV групп / под ред. В.А. Филова. - Л. : Химия, 2008. - 611 с.
        • 2. Джувеликян Х. А., Щеглов Д. И., Горубнова Н. С. Загрязнение почв тяжелыми металлами. Способы контроля и нормирования загрязненных почв. Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2009. - 21 с.
        • 3. ГН 2.1.7.020-94. Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах. Дополнение № 1 к перечню ПДК и ОДК №6229-91. - М. : Госкомсаниздат, 1995.
        • 4. ГОСТ 17.4.2.03-86 (СТ СЭВ 5299-85). Охрана природы. Почвы. Паспорт почв. - М. : Госкомсаниздат, 1987.
        • 5. ГОСТ 17.4.3.01-83 (СТ СЭВ 3847-82). Охрана природы. Почвы. Общие требования к отбору проб. - М. : Госкомсаниздат, 1984.
        • 6. ГОСТ 17.4.3.06-86 (СТ СЭВ 5301-85). Охрана природы. Почвы. Общие требования к классификации почв по влиянию на них химических загрязняющих веществ. - М. : Госкомсаниздат, 1987.
        • 7. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства. - М. : ЦИНАО, 1992. - 60 с.
        • 8. Мотузова Г.В. Экологический мониторинг почв / Г.В. Мотузова, О.С. Безуглова. - М. : Академический Проект; Гаудеамус, 2007. - 237 с.
        • 9. Перельман А.И. Геохимия ландшафта / А.И. Перельман, Н.С. Касимов. - М. : Астрея-2000, 1999. - 768 с.
        • 10. Реймерс Н.Ф. Природопользование: слов.-справ. / Н.Ф. Реймерс. - М. : Мысль, 1990. - 638 с.
        • Размещено на Allbest.ru
        ...

Подобные документы

    Источники, характер и степень загрязнения урбанозёмов и почв. Районы г. Челябинска, подверженные наиболее интенсивному загрязнению. Влияние загрязнения почв тяжелыми металлами на растительность. Формы нахождения тяжелых металлов в выбросах и почве.

    дипломная работа , добавлен 02.10.2015

    Общая характеристика тяжёлых металлов, формы их нахождения в окружающей среде. Источники поступления тяжелых металлов в окружающую среду. Теория и методы биоиндикации. Биологические объекты как индикаторы загрязнения окружающей среды тяжелыми металлами.

    курсовая работа , добавлен 27.09.2013

    Источники поступления тяжелых металлов в водные экосистемы. Токсическое действие тяжелых металлов на человека. Оценка степени загрязнения поверхностных вод водоемов, расположенных на территории г. Гомеля, свинцом, медью, хромом, цинком, никелем.

    дипломная работа , добавлен 08.06.2013

    Рассмотрение биохимического метода очистки почв, его виды: биовентилирование, фиторемедиация (очистка с помощью зелёных растений), грибковые технологии, использование ила. Основные причины загрязнения тяжелыми металлами сельскохозяйственных земель.

    курсовая работа , добавлен 16.05.2014

    Характеристика Тюменского района. Климатическая характеристика и географическое положение. Характеристика почвенного покрова. Характеристика растительного и животного мира. Обзор мероприятий по рекультивации загрязненного тяжелыми металлами участка.

    курсовая работа , добавлен 18.12.2014

    Типы и виды деградации пригородных почв, оценка степени деградации. Способы рекультивации загрязненных почв. Характеристика г. Ижевска как источника химического загрязнения почв. Технологические приёмы рекультивации почв, загрязнённых тяжёлыми металлами.

    курсовая работа , добавлен 11.06.2015

    Обзор источников техногенного загрязнения земель. Показатели и классы опасных веществ. Загрязнение почв радионуклидами и тяжелыми металлами. Уровни загрязнения территории Беларуси в результате катастрофы на Чернобыльской АЭС. Экологические проблемы почвы.

    курсовая работа , добавлен 08.12.2016

    Понятие тяжелых металлов, их биогеохимические свойства и формы нахождения в окружающей среде. Подвижность тяжелых металлов в почвах. Виды нормирования тяжелых металлов в почвах и растениях. Аэрогенный и гидрогенный способы загрязнения почв городов.

    курсовая работа , добавлен 10.07.2015

    дипломная работа , добавлен 23.09.2012

    Основные понятия и этапы рекультивации земель. Рекультивация полигонов твердых бытовых отходов. Схема процесса очистки почвы от нефтепродуктов с внесением нефтеокисляющих микроорганизмов. Рекультивация земель, загрязненных тяжелыми металлами, отвалов.

Загрязнение почв тяжелыми металлами имеет разные источники:

1. отходы металлообрабатывающей промышленности;

2. промышленные выбросы;

3. продукты сгорания топлива;

4. автомобильные выхлопы отработанных газов;

5. средства химизации сельского хозяйства.

Металлургические предприятия ежегодно выбрасывают на поверхность земли более 150 тыс. тонн меди, 120 тыс. тонн цинка, около 90 тыс. тонн свинца, 12 тыс. тонн никеля, 1,5 тыс. тонн молибдена, около 800 тонн кобальта и около 30 тонн ртути. На 1 грамм черновой меди отходы медеплавильной промышленности содержат 2,09 тонн пыли, в составе которой содержится до 15% меди, 60% окиси железа и по 4% мышьяка, ртути, цинка и свинца. Отходы машиностроительных и химических производств содержат до 1 г/кг свинца, до 3 г/кг меди, до 10 г/кг хрома и железа, до 100 г/кг фосфора и до 10 г/кг марганца и никеля. В Силезии вокруг цинковых заводов громоздятся отвалы с содержанием цинка от 2 до 12% и свинца от 0,5 до 3%, а в США эксплуатируют руды с содержанием цинка 1,8%.

С выхлопными газами на поверхность почв попадает более 250 тыс. тонн свинца в год; это главный загрязнитель почв свинцом. Тяжелые металлы попадают в почву вместе с удобрениями, в состав которых они входят как примесь.

Хотя тяжелые металлы иногда обнаруживаются в почвах в низких концентрациях, они формируют устойчивые комплексы с органическими соединениями и вступают в специфические реакции адсорбции легче, чем щелочные и щелочноземельные металлы.Вблизи предприятий естественные фитоценозы предприятий становятся более однообразными по видовому составу, так как многие виды не выдерживают повышения концентрации тяжелых металлов в почве. Количество видов может сокращаться до 2-3, а иногда до образования моноценозов.В лесных фитоценозах первыми реагируют на загрязнения лишайники и мхи. Наиболее устойчив древесный ярус. Однако длительное или высокоинтенсивное воздействие вызывает в нем сухостойкие явления.Восстановление нарушенного почвенного покрова требует длительного времени и больших капиталовложений.

Особенно трудной задачей является восста­новление растительного покрова на отвалах вскрышных пород и хвостохранилищах (хвостах) выработок, где добывались руды металлов: такие хвосты обычно бедны элементами питания, бога­ты токсичными металлами и слабо удерживают воду. Серьезной проблемой для окружающей сре­ды является ветровая эрозия рудниковых отва­лов.

Нормирование содержания тяжелых металлов в почве

Нормирование содержания тяжелых металлов в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Приводимые исследователями результаты различаются иногда в 5-10 раз.


Предложено множество шкал экологического нормирования тяжелых металлов. В некоторых случаях за предельно допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других - содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, которые превосходят реально допустимые значения концентраций металлов в несколько раз.

Для характеристики техногенного загрязнения тяжелыми металлами используется коэффициент концентрации, равный отношению концентрации элемента в загрязненной почве к его фоновой концентрации.

В таблице 1 приведены официально утвержденные ПДК и допустимые уровни их содержания по показателям вредности. В соответствие с принятой медиками-гигиенистами схеме нормирование тяжелых металлов в почвах подразделяется на транслокационное (переход элемента в растения), миграционное водное (переход в воду), и общесанитарное (влияние на самоочищающую способность почв и почвенный микробиоценоз).

К тяжелым металлам (ТМ) относятся около 40 металлов с атомными массами свыше 50 и плотностью более 5 г/см 3 , хотя в число ТМ входит и легкий бериллий. Оба признака достаточно условны и перечни ТМ по ним не совпадают.

По токсичности и распространению в окружающей среде можно выделить приоритетную группу ТМ: Pb, Hg, Cd, As, Bi, Sn, V, Sb. Несколько меньшее значение имеют: Сг, Cu, Zn, Mn, Ni, Co, Mo.

Все ТМ в той или иной степени ядовиты, хотя некоторые из них (Fe, Cu, Co, Zn, Mn) входят в состав биомолекул и витаминов.

Тяжелые металлы антропогенного происхождения попадают из воздуха в почву в виде твердых или жидких осадков. Лесные массивы с их развитой контактирующей поверхностью особенно интенсивно задерживают тяжелые металлы.

В общем, опасность загрязнения тяжелыми металлами из воздуха существует в равной степени для любых почв. Тяжелые металлы негативно влияют на почвенные процессы, плодородие почв и качество сельскохозяйственной продукции. Восстановление биологической продуктивности почв, загрязненных тяжелыми металлами – одна из наиболее сложных проблем охраны биоценозов.

Важной особенностью металлов является устойчивость загрязнения. Сам элемент разрушиться не может, переходя из одного соединения в другое или перемещаясь между жидкой и твердой фазами. Возможны окислительно-восстановительные переходы металлов с переменной валентностью.

Опасные для растений концентрации ТМ зависят от генетического типа почвы. Основными показателями, влияющими на накопление ТМ в почвах, являются кислотно-основные свойства и содержание гумуса .

Учесть все разнообразие почвенно-геохимических условий при установлении ПДК тяжелых металлов практически невозможно. В настоящее время для ряда тяжелых металлов установлены ОДК их содержания в почвах, которые используются в качестве ПДК (приложение 3).

При превышении допустимых значений содержания ТМ в почвах эти элементы накапливаются в растениях в количествах, превышающих их ПДК в кормах и продуктах питания.

В загрязненных почвах глубина проникновения ТМ обычно не превышает 20 см, однако при сильном загрязнении ТМ могут проникать на глубину до 1,5м. Среди всех тяжелых металлов цинк и ртуть обладают наибольшей миграционной способностью и распределяются равномерно в слое почвы на глубине 0…20 см, в то время как свинец накапливается только в поверхностном слое (0…2,5 см). Промежуточное положение между этими металлами занимает кадмий.

У свинца четко выражена тенденция к накоплению в почве, т.к. его ионы малоподвижны даже при низких значениях рН. Для различных видов почв скорость вымывания свинца колеблется от 4г до 30 г/га в год. В то же время количество вносимого свинца может составлять в различных районах 40…530 г/га в год. Попадающий при химическом загрязнении в почву свинец сравнительно легко образует гидроксид в нейтральной или щелочной среде. Если почва содержит растворимые фосфаты, тогда гидроксид свинца переходит в труднорастворимые фосфаты.

Значительные загрязнения почвы свинцом можно обнаружить вдоль крупных автомагистралей, вблизи предприятий цветной металлургии, вблизи установок по сжиганию отходов, где отсутствует очистка отходящих газов. Проводимая постепенная замена моторного топлива, содержащего тетраэтилсвинец, топливом без свинца дает положительные результаты: поступление свинца в почву резко снизилось и в будущем этот источник загрязнения в значительной степени будет ликвидирован.

Опасность попадания свинца с частицами почв в организм ребенка является одним из определяющих факторов при оценке опасности загрязнения почв населенных пунктов. Фоновые концентрации свинца в почвах разного типа колеблются в пределах 10…70 мг/кг. По мнению американских исследователей, содержание свинца в городских почвах не должно превышать 100 мг/кг – при этом обеспечивается защита организма ребенка от избыточного поступления свинца через руки и загрязненные игрушки. В реальных же условиях содержание свинца в почве значительно превышает этот уровень. В большинстве городов содержание свинца в почве варьируется в пределах 30…150 мг/кг при средней величине около 100 мг/кг. Наиболее высокое содержание свинца – от 100 до 1000 мг/кг – обнаруживается в почве городов, в которых расположены металлургические и аккумуляторные предприятия (Алчевск, Запорожье, Днепродзержинск, Днепропетровск, Донецк, Мариуполь, Кривой Рог).

Растения более устойчивы по отношению к свинцу, чем люди и животные, поэтому необходимо тщательно следить за содержанием свинца в продуктах питания растительного происхождения и в фураже.

У животных на пастбищах первые признаки отравления свинцом наблюдаются при суточной дозе около 50 мг/кг сухого сена (на сильно загрязненных свинцом почвах получаемое сено может содержать свинца 6,5 г/кг сухого сена!). Для людей при употреблении салата ПДК составляет 7,5 мг свинца на 1 кг листьев.

В отличие от свинца кадмий попадает в почву в значительно меньших количествах: около 3…35 г/га в год. Кадмий заносится в почву из воздуха (около 3 г/га в год) либо с фосфорсодержащими удобрениями (35…260 г/т). В некоторых случаях источником загрязнения могут быть предприятия, связанные с переработкой кадмия. В кислых почвах со значением рН<6 ионы кадмия весьма подвижны и накопления металла не наблюдается. При значениях рН>6 кадмий отлагается вместе с гидроксидами железа, марганца и алюминия, при этом происходит потеря протонов группами ОН. Такой процесс при понижении рН становится обратимым, и кадмий, а также другие ТМ, могут необратимо медленно диффундировать в кристаллическую решетку оксидов и глин.

Соединения кадмия с гуминовыми кислотами значительно менее устойчивы, чем аналогичные соединения свинца. Соответственно накопление кадмия в гумусе протекает в значительно меньшей степени, чем накопление свинца.

В качестве специфичного соединения кадмия в почве можно назвать сульфид кадмия, который образуется из сульфатов при благоприятных условиях восстановления. Карбонат кадмия образуется только при значениях рН >8, таким образом, предпосылки для его осуществления крайне незначительны.

В последнее время большое внимание стали уделять тому обстоятельству, что в биологическом иле, который вносится в почву для ее улучшения, обнаруживается повышенная концентрация кадмия. Около 90% кадмия, имеющегося в сточных водах, переходит в биологический ил: 30% при первоначальном осаждении и 60…70% при его дальнейшей обработке.

Удалить кадмий из ила практически невозможно. Однако, более тщательный контроль за содержанием кадмия в сточных водах позволяет снизить его содержание в иле до значений ниже 10 мг/кг сухого вещества. Поэтому практика использования ила очистных сооружений в качестве удобрения весьма различается в разных странах.

Основными параметрами, определяющими содержания кадмия в почвенных растворах или его сорбцию почвенными минералами и органическими компонентами, являются рН и вид почвы, а также присутствие других элементов, например кальция.

В почвенных растворах концентрация кадмия может составлять 0,1…1мкг/л. В верхних слоях почвы, глубиной до 25см, в зависимости от концентрации и типа почвы элемент может удерживаться в течение 25…50 лет, а в отдельных случаях даже 200…800 лет.

Растения усваивают из минеральных веществ почвы не только жизненно важные для них элементы, но и такие, физиологическое действие которых либо неизвестно, либо безразлично для растения. Содержание кадмия в растении полностью определяется его физическими и морфологическими свойствами – его генотипом.

Коэффициент переноса тяжелых металлов из почвы в растения приведены ниже:

Pb 0,01…0,1 Ni 0,1…1,0 Zn 1…10

Cr 0,01…0,1 Cu 0,1…1,0 Cd 1…10

Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий, по сравнению с другими ТМ, является наиболее сильным токсикантом почв (Cd > Ni > Cu > Zn).

Между отдельными видами растений наблюдаются значительные различия. Если шпинат (300 млрд -1), кочанный салат (42 млрд -1), петрушку (31 млрд -1), а также сельдерей, кресс-салат, свеклу и лук-резанец можно отнести к растениям, „обогащенным” кадмием, то в бобовых, томатах, косточковых и семечковых фруктах содержится относительно мало кадмия (10…20 млрд -1). Все концентрации указаны относительно массы свежего растения (или плода). Из зерновых культур зерно пшеницы сильнее загрязнено кадмием, чем зерно ржи (50 и 25 млрд -1), однако 80…90% поступившего из корней кадмия остается в корнях и соломе.

Поглощение кадмия растениями из почвы (перенос почва/растение) зависит не только от вида растения, но и от содержания кадмия в почве. При высокой концентрации кадмия в почве (более 40 мг/кг) на первом месте стоит его поглощение корнями; при меньшем содержании наибольшее поглощение происходит из воздуха через молодые побеги. Длительность роста также влияет на обогащение кадмием: чем короче вегетация, тем меньше перенос из почвы в растение. Это является причиной того, что накопление кадмия в растениях из удобрений оказывается меньшим, чем его разбавление за счет ускорения роста растения, вызванного действием этих же удобрений.

Если в растениях достигается высокая концентрация кадмия, то это может привести к нарушениям нормального роста растений. Урожай бобов и моркови, например, снижается на 50%, если содержание кадмия в субстрате составляет 250 млн -1 . У моркови листья увядают при концентрации кадмия 50 мг/кг субстрата. У бобов при этой концентрации на листьях выступают ржавые (резко очерченные) пятна. У овса на концах листьев можно наблюдать хлороз (пониженное содержание хлорофилла).

По сравнению с растениями многие виды грибов накапливают большое количество кадмия. К грибам с высоким содержанием кадмия относят некоторые разновидности шампиньонов, в частности овечий шампиньон, в то время как луговой и культурный шампиньоны содержат относительно мало кадмия. При исследовании различных частей грибов было установлено, что пластинки в них содержат больше кадмия, чем сама шляпка, а меньше всего кадмия в ножке гриба. Как показывают опыты по выращиванию шампиньонов, двух-трехкратное увеличение содержания кадмия в грибах обнаруживается в том случае, если его концентрация в субстрате увеличивается в 10 раз.

Дождевые черви обладают способностью быстрого накопления кадмия из почвы, вследствие чего они оказались пригодными для биоиндикации остатков кадмия в почве.

Подвижность ионов меди еще выше, чем подвижность ионов кадмия. Это создает более благоприятные условия для усвоения меди растениями. Благодаря своей высокой подвижности медь легче вымывается из почвы, чем свинец. Растворимость соединений меди в почве заметно увеличивается при значениях рН< 5. Хотя медь в следовых концентрациях считается необходимой для жизнедеятельности, у растений токсические эффекты проявляются при содержании 20 мг на кг сухого вещества.

Известно альгицидное действие меди. Медь оказывает токсическое действие и на микроорганизмы, при этом достаточна концентрация около 0,1мг/л. Подвижность ионов меди в гумусном слое ниже, чем в расположенном ниже минеральном слое.

К сравнительно подвижным элементам в почве относится цинк. Цинк принадлежит к числу распространенных в технике и быту металлов, поэтому ежегодное внесение его в почву достаточно велико: оно составляет 100…2700г на гектар. Особенно загрязнена почва вблизи предприятий, перерабатывающих цинксодержащие руды.

Растворимость цинка в почве начинает увеличиваться при значениях рН<6. При более высоких значениях рН и в присутствии фосфатов усвояемость цинка растениями значительно понижается. Для сохранения цинка в почве важнейшую роль играют процессы адсорбции и десорбции, определяемые значением рН, в глинах и различных оксидах. В лесных гумусовых почвах цинк не накапливается; например, он быстро вымывается благодаря постоянному естественному поддержанию кислой среды.

Для растений токсический эффект создается при содержании около 200мг цинка на кг сухого материала. Организм человека достаточно устойчив по отношению к цинку и опасность отравления при использовании сельскохозяйственных продуктов, содержащих цинк, невелика. Тем не менее, загрязнение почвы цинком представляет серьезную экологическую проблему, так как при этом страдают многие виды растений. При значениях рН>6 происходит накопление цинка в почве в больших количествах благодаря взаимодействию с глинами.

Различные соединения железа играют существенную роль в почвенных процессах в связи со способностью элемента менять степень окисления с образованием соединений различной растворимости, окисленности, подвижности. Железо в очень высокой степени вовлечено в антропогенную деятельность, оно отличается настолько высокой технофильностью, что нередко говорят о современном «ожелезнении» биосферы. В техносферу в настоящее время вовлечено более 10 млрд т железа, 60% которого рассеяно в пространстве.

Аэрация восстановленных горизонтов почвы, различных отвалов, терриконов приводит к реакциям окисления; при этом присутствующие в таких материалах сульфиды железа преобразуются в сульфаты железа с одновременным образованием серной кислоты:

4FeS 2 + 6H 2 O + 15O 2 = 4FeSO 4 (OH) + 4H 2 SO 4

В таких средах значения рН могут снижаться до 2,5…3,0. Серная кислота разрушает карбонаты с образованием гипса, сульфатов магния и натрия. Периодическая смена окислительно-восстановительных условий среды приводит к декарбонизации почв, дальнейшему развитию устойчивой кислой среды с рН 4…2,5, причем соединения железа и марганца накапливаются в поверхностных горизонтах.

Гидроксиды и оксиды железа и марганца при образовании осадков легко захватывают и связывают никель, кобальт, медь, хром, ванадий, мышьяк.

Основные источники загрязнения почвы никелем – предприятия металлургии, машиностроения, химической промышленности, сжигание каменного угля и мазута на ТЭЦ и котельных. Антропогенное загрязнение никелем наблюдается на расстоянии до 80…100 км и более от источника выброса.

Подвижность никеля в почве зависит от концентрации органического вещества (гумусовых кислот), рН и потенциала среды. Миграция никеля носит сложный характер. С одной стороны, никель поступает из почвы в виде почвенного раствора в растения и поверхностные воды, с другой – его количество в почве пополняется вследствие разрушения почвенных минералов, отмирания растений и микроорганизмов, а также за счет его внесения в почву с атмосферными осадками и пылью, с минеральными удобрениями.

Основной источник загрязнения почвы хромом – сжигание топлива и отходы гальванических производств, а также отвалы шлаков при производстве феррохрома, хромовых сталей; некоторые фосфорные удобрения содержат хрома до 10 2 …10 4 мг/кг.

Поскольку Cr +3 в кислой среде инертен (выпадая почти полностью в осадок при рН 5,5), его соединения в почве весьма стабильны. Напротив, Cr +6 крайне нестабилен и легко мобилизуется в кислых и щелочных почвах. Снижение подвижности хрома в почвах может приводить к его дефициту в растениях. Хром входит в состав хлорофилла, придающего листьям растений зеленый цвет, и обеспечивает усвоение растениями из воздуха углекислоты.

Установлено, что известкование, а также применение органических веществ и соединений фосфора существенно снижает токсичность хроматов в загрязненных почвах. При загрязнении почв шестивалентным хромом подкисление, а затем применение восстанавливающих агентов (например, серы) используется для восстановления его до Cr +3 , после чего проводится известкование для осаждения соединений Cr +3 .

Высокая концентрация хрома в почве городов (9…85 мг/кг) связана с высоким содержанием его в дождевых и поверхностных водах.

Накопление или вымывание токсичных элементов, попавших в почву, в значительной степени зависит от содержания гумуса, который связывает и удерживает ряд токсичных металлов, но в первую очередь – медь, цинк, марганец, стронций, селен, кобальт, никель (в гумусе количество этих элементов в сотни-тысячи раз больше, чем в минеральной составляющей почв).

Природные процессы (солнечная радиация, климат, выветривание, миграция, разложение, вымывание) способствуют самоочищению почв, основной характеристикой которого является его продолжительность. Продолжительность самоочищения – это время, в течение которого происходит уменьшение на 96% массовой доли загрязняющего вещества от начального значения или до его фонового значения. Для самоочищения почв, а также их восстановления требуется много времени, которое зависит от характера загрязнения и природных условий. Процесс самоочищения почв длится от нескольких дней до нескольких лет, а процесс восстановления нарушенных земель – сотни лет.

Способность почв к самоочищению от тяжелых металлов невелика. Из довольно богатых органическим веществом лесных почв умеренного пояса с поверхностным стоком удаляется только примерно 5% поступающего из атмосферы свинца и около 30% цинка и меди. Остальная часть выпавших ТМ практически полностью задерживается в поверхностном слое почвы, поскольку миграция вниз по почвенному профилю происходит крайне медленно: со скоростью 0,1…0,4 см/год. Поэтому время полувыведения свинца в зависимости от типа почв может составить от 150 до 400 лет, а для цинка и кадмия – 100…200 лет.

Сельскохозяйственные почвы несколько быстрее очищаются от избыточных количеств некоторых ТМ в силу более интенсивной миграции за счет поверхностного и внутрипочвенного стока, а также из-за того, что заметная часть микроэлементов через корневую систему переходит в зеленую биомассу и уносится с урожаем.

Следует отметить, что загрязнение почв некоторыми токсичными веществами существенно тормозит процесс самоочищения почв от бактерий группы кишечной палочки. Так, при содержании 3,4-бензпирена 100 мкг/кг почвы численность этих бактерий в почве в 2,5 раза выше, чем в контроле, а при концентрации более 100 мкг/кг и до 100 мг/кг – их значительно больше.

Исследования почв в районе металлургических центров, проведенные Институтом почвоведения и агрохимии, свидетельствуют, что в радиусе 10км содержание свинца в 10 раз превышает фоновое значение. Наибольшее превышение отмечено в г.г.Днепропетровске, Запорожье и Мариуполе. Содержание кадмия в 10…100 раз выше фонового уровня отмечено вокруг Донецка, Запорожье, Харькова, Лисичанска; хрома – вокруг Донецка, Запорожье, Кривого Рога, Никополя; железа, никеля – вокруг Кривого Рога; марганца – в районе Никополя. В общем, по данным того же института, около 20% территории Украины загрязнено тяжелыми металлами.

Во время оценки степени загрязнения тяжелыми металлами используют данные о ПДК и их фоновом содержании в почвах основных природно-климатических зон Украины. В случае установления в почве повышенного содержания нескольких металлов загрязнение оценивают по металлу, содержание которого превышает норматив в наибольшей степени.

Один из источников загрязнения окружающей среды – это тяжелые металлы (ТМ), более 40 элементов системы Менделеева. Они принимают участие во многих биологических процессах. Среди наиболее распространенных тяжелых металлов, являются такие элементы:

  • никель;
  • титан;
  • цинк;
  • свинец;
  • ванадий;
  • ртуть;
  • кадмий;
  • олово;
  • хром;
  • медь;
  • марганец;
  • молибден;
  • кобальт.

Источники загрязнения окружающей среды

В широком смысле источники загрязнения окружающей среды тяжелыми металлами можно поделить на природные и техногенные. В первом случае химические элементы попадают в биосферу из-за водной и ветровой эрозии, извержения вулканов, выветривания минералов. Во втором случае ТМ попадают в атмосферу, литосферу, гидросферу из-за активной антропогенной деятельности: при сжигании топлива для получения энергии, при работе металлургической и химической индустрии, в агропромышленности, при добыче ископаемых и т. п.

Во время работы промышленных объектов загрязнение окружающей среды тяжелыми металлами происходит различными путями:

  • в воздух в виде аэрозолей, распространяясь на обширные территории;
  • вместе с промышленными стоками металлы поступают в водоемы, изменяя химический состав рек, морей, океанов, а также попадают в грунтовые воды;
  • оседая в слое почвы, металлы изменяют ее состав, что приводит к ее истощению.

Опасность загрязнения тяжелыми металлами

Основная опасность ТМ заключается в том, что они загрязняют все слои биосферы. В результате в атмосферу попадают выбросы дыма и пыли, затем выпадают в виде . Потом люди и животные дышат грязным воздухом, в организм живых существ попадают эти элементы, вызывая всевозможные патологии и недуги.

Металлы загрязняют все акватории и источники воды. Это порождает проблему дефицита питьевой воды на планете. В некоторых регионах земли люди умирают не только от того, что пьют грязную воду, в последствие чего болеют, но и от обезвоживания.

Накапливаясь в земле, ТМ отравляют растения, произрастающие в ней. Попадая в почву, металлы всасываются в корневую систему, затем поступают в стебли и листья, корнеплоды и семена. Их избыток приводит к ухудшению роста флоры, токсикации, пожелтению, увяданию и гибели растений.

Таким образом, тяжелые металлы негативно влияют на экологию. Они попадают в биосферу различными путями, и, конечно же, в большей мере благодаря деятельности людей. Чтобы замедлить процесс загрязнения ТМ, необходимо контролировать все сферы промышленности, использовать очистительные фильтры и уменьшить количество отходов, в которых могут содержаться металлы.