Классическая схема опытов по интерференции поляризованного света сводится к наблюдению интерференции при введении кристаллической пластинки между двумя поляризаторами. Лучше всего использовать плоскопараллельную пластинку П, вырезанную параллельно оптической оси кристалла и вводимой строго перпендикулярно параллельному пучку света, проходящему через поляризатор Р и анализатор А (рис. 6.17, а).

Р и с. 6.17 а

Р и с. 6.17 б

Поляризатор создает поляризованную волну, в кристаллической пластинке образуются две волны, фазы которых скоррелированы, а колебания взаимно перпендикулярны. Анализатор пропускает только составляющую каждого колебания по определенной оси, и тем самым обеспечивает возможность наблюдения интерференции.

Решим в общем виде задачу об интенсивности света, прошедшего через данную систему.

Пучок монохроматического линейно поляризованного света, который создается поляризатором, падает нормально (вдоль оси Oz ) на плоскопараллельную пластинку двоякопреломляющего одноосного кристалла толщиной D , вырезанную параллельно оптической оси. Ось Oy направим вдоль оптической оси пластинки (рис. 6.17 б).

В пластинке в направлении оси O Z будут распространяться с разной скоростью две волны. В одной волне электрические колебания лежат в плоскости главного сечения (плоскость Y O Z ), т. е. направлены вдоль оптической оси. Это необыкновенная волна. В обыкновенной волне электрические колебания совершаются в плоскости X O Z , т. е. направлены перпендикулярно оптической оси. Направление оптической оси и направление, перпендикулярное ему, называют Главными Направлениями пластинки. В нашем случае они совпадают с осями O Y и O X .

Пусть в падающем поляризованном свете направление колебания светового вектора составляет угол c направлением оптической оси. Если амплитуда в падающей поляризованной волне равна E 0, то амплитуды колебаний необыкновенной (Ae ) и обыкновенной (A 0) волн найдем, взяв проекцию амплитуды E 0 на ось O Y и O X . Как видно из рис. 6.17, б,

Так как внутри пластинки эти волны распространяются с различной фазовой скоростью, то на выходе между ними возникает разность фаз δ . Если толщина пластинки D , то ,

Где λ – длина волны света в вакууме.

Обыкновенная и необыкновенная волны, выходящие из двупреломляющей пластинки, обладают постоянной разностью фаз, т. е. они являются когерентными. Но поскольку они поляризованы ортогонально друг другу, то интерференционный эффект при их суперпозиции не проявляется. Как было показано, мы получаем в общем случае эллиптически поляризованную волну. Обыкновенная и необыкновенная волны могут создавать устойчивую интерференционную картину, если колебания в них свести к одной плоскости. Это можно сделать, поставив после двупреломляющей пластинки анализатор, что соответствует нашему опыту.

Рассчитаем интерференционную картину для случая, когда плоскость пропускания анализатора (обозначим АА ) перпендикулярна плоскости колебаний светового вектора в пучке на выходе из поляризатора (обозначим РР ). Для расчета удобнее плоскость X O Y перенести в плоскость рисунка (рис. 6.18). Свет распространяется по направлению к нам (вдоль оси O Z ). После прохождения анализатора амплитуды колебаний от необыкновенной (А 1) и обыкновенной (А 2) волн станут меньше.

Из рис. 6.18 видно, что , .

Вектора амплитуд колебаний А 1 и А 2 противоположны по направлению, что соответствует возникновению между ними дополнительной разности фаз в π . Результирующая разность фаз .

Суммарная интенсивность двух взаимодействующих когерентных пучков определяется из соотношения:

Используя формулы – , последнее соотношение перепишем в виде:,

Где I 0 ~ E 02 – интенсивность пучка на выходе из поляризатора P .Проведем небольшой анализ формулы.

Для пластинки ”λ /4” формула принимает вид .

При повороте пластинки интенсивность будет изменяться от I Max = I 0/2 (при = π /4, 3π /4, 5π /4, 7π /4) до I Min = 0 (при = 0, π /2, π , 3π /2). График зависимости интенсивности света I от угла между направлением колебания светового вектора в падающем лазерном пучке и направлением оптической оси, представленный в полярных координатах, имеет вид, изображенный на рис. 6.19.

Для пластинки ”λ /2” получим аналогично: .

При повороте пластинки интенсивность опять будет изменяться от I Max= I 0 (при = π /4, 3π /4, 5π /4, 7π /4) до I = 0 (при = 0, π /2, π , 3π /2). Это представлено на рис. 6.19 пунктирной линией.

Заметим, что для любой пластинки интенсивность на выходе из системы равна нулю, когда световой вектор падающего поляризованного пучка совпадает с одним из главных направлений в пластинке. В этих случаях в пластинке существует только один луч: или обыкновенный (при = π /2, 3π /2) или необыкновенный (при = 0, π ). Он сохраняет линейную поляризацию падающего пучка и не проходят через анализатор, так как плоскости АА и РР перпендикулярны.

В опытах подобного рода обычно изучают не интенсивность света, выходящего из системы, а наблюдают изменение интерференционной картины. Для этого необходимо осветить кристаллическую пластинку, помещенную между поляризатором и анализатором, непараллельным пучком света и спроектировать картину линзой на экран. В проходящем свете наблюдаются интерференционные полосы, соответствующие постоянной разности фаз. Их форма зависит от взаимной ориентации поляризаторов и оси кристаллической пластинки. Таким способом проводят контроль за качеством оптических изделий, изготовленных из кристаллов. Наблюдение интерференционной картины, возникающей в любой пластинке, помещенной между двумя поляризаторами, может служить способом обнаружения слабой анизотропии материала, из которого она изготовлена. Высокая чувствительность такой методики открывает возможность различных приложений в кристаллографии, физике высокомолекулярных соединений и в других областях.


Интерференция света – это явление наложения когерентных волн
- свойственно волнам любой природы (механическим, электромагнитным и т.д.
Когерентные волны - это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз.
При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний (смещения) этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.
При наложении когерентных волн возможны два предельных случая:
Условие максимума:

Разность хода волн равна целому числу длин волн (иначе четному числу длин полуволн).


где

В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.
Условие минимума:

Разность хода волн равна нечетному числу длин полуволн.

где

Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.
Амплитуда колебаний данной точки равна нулю.

В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина.

Дифракция света
– это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий.
Явление дифракции света доказывает, что свет обладает волновыми свойствами.
Для наблюдения дифракции можно:
- пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюдается сложная картина из светлых и темных концентрических колец.
- или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.

Наблюдение дифракции света на малом отверстии.

Объяснение картины на экране:
Французский физик О. Френель объяснил наличие полос на экране тем, что световые волны, приходящие из разных точек в одну точку на экране, интерферируют между собой.
Принцип Гюйгенса – Френеля
Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой.
Амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.
Принцип Гюйгенса-Френеля дает объяснение явлению дифракции:
1. вторичные волны, исходя из точек одного и того же волнового фронта (волновой фронт – это множество точек, до которых дошло колебание в данный момент времени) , когерентны, т.к. все точки фронта колеблются с одной и той же частотой и в одной и той же фазе;
2. вторичные волны, являясь когерентными, интерферируют.
Явление дифракции накладывает ограничения на применение законов геометрической оптики:
Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только, если размеры препятствий много больше длины световой волны.
Дифракция накладывает предел на разрешающую способность оптических приборов:
- в микроскопе при наблюдении очень мелких предметов изображение получается размытым
- в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.
Дифракционная решетка
- это оптический прибор для измерения длины световой волны.
Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.
Если на решетку падает монохроматическая волна. то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.


Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладыается целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы (кроме центрального) имеют радужную окраску.


Итак, условие максимума:


где k – порядок (или номер) дифракционного спектра
Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается.
Точность измерения длины волны тем больше, чем больше штрихов приходится на единицу длины решетки.
Поляризация света

Поляризация волн
Свойство поперечных волн – поляризация.
Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости.
Такую волну можно получить с помощью резинового шнура, если на его пути поставить преграду с тонкой щелью. Щель пропустит только те колебания, которые происходят вдоль нее.


Устройство, выделяющее колебания, происходящие в одной плоскости, называется поляризатором.
Устройство, позволяющее определить плоскость поляризации (вторая щель) называется анализатором.
Поляризация света
Опыт с турмалином – доказательство поперечности световых волн.
Кристалл турмалина – это прозрачный, зеленого цвета минерал, обладающий осью симметрии.
В луче света от обычного источника присутствуют колебания векторов напряженности электрического поля Е и магнитной индукции В всевозможных направлений, перпендикулярных направлению распространения световой волны. Такая волна называется естественной волной.


При прохождении через кристалл турмалина свет поляризуется.
У поляризованного света колебания вектора напряженности Е происходят только в одной плоскости, которая совпадает с осью симметрии кристалла.

Поляризация света после прохождения турмалина обнаруживается, если за первым кристаллом (поляризатором) поставить второй кристалл турмалина (анализатор).
При одинаково направленных осях двух кристаллов световой луч пройдет через оба и лишь чуть ослабнет за счет частичного поглощения света кристаллами.

Схема действия поляризатора и стоящего за ним анализатора:

Если второй кристалл начать поворачивать, т.е. смещать положение оси симметрии второго кристалла относительно первого, то луч будет постепенно гаснуть и погаснет совершенно, когда положение осей симметрии обоих кристаллов станет взаимно перпендикулярным.
Вывод:
Свет- это поперечная волна.
Применение поляризованного света:
- плавная регулировка освещенности с помощью двух поляроидов
- для гашения бликов при фотографировании (блики гасят, поместив междуисточником света и отражающей поверхностью поляроид)
- для устранения слепящего действия фар встречных машин.

ИНТЕРФЕРЕНЦИЯ ПОЛЯРИЗОВАННЫХ ЛУЧЕЙ - явление, возникающее при сложении когерентных поляризованных световых колебаний (см. Поляризация света ).И. п. л. исследовалась в классич. опытах О. Френеля (A. Fresnel) и Д. Ф. Араго (D. F. Arago) (1816). Наиб, контраст интерференц. картины наблюдается при сложении когерентных колебаний одного вида поляризации (линейных, круговых, эллиптич.) с совпадающими азимутами. Интерференция никогда не наблюдается, если волны поляризованы во взаимно перпендикулярных плоскостях. При сложении двух линейно поляризованных взаимно перпендикулярных колебаний в общем случае возникает эллиптически поляризованное колебание, интенсивность к-рого равна сумме интенсивностей исходных колебаний. И. п. л. можно наблюдать, напр., при прохождении линейно поляризованного света через анизотропные среды. Проходя через такую среду, поляризованное колебание разделяется на два когерентных элементарных ортогональных колебания, распространяющихся с разл. скоростью. Далее одно из этих колебаний преобразуют в ортогональное (чтобы получить совпадающие азимуты) или выделяют из обоих колебаний составляющие одного вида поляризации с совпадающими азимутами. Схема наблюдения И. п. л. в параллельных лучах дана на рис. 1, а . Пучок параллельных лучей выходит из поляризатора N 1 линейно поляризованным в направлении N 1 N 1 (рис. 1, б) . В пластинке К , вырезанной из двоякопреломляющего одноосного кристалла параллельно его оптич. оси ОО и расположенной перпендикулярно падающим лучам, происходит разделение колебания N 1 N 1 на составляющие А е , параллельную оптич. оси (необыкновенную), и A 0 , перпендикулярную оптич. оси (обыкновенную). Для повышения контраста интерференц. картины угол между N 1 N 1 и А 0 устанавливают равным 45°, благодаря чему амплитуды колебаний А е и А 0 равны. Показатели преломления n е и n 0 для этих двух лучей различны, а следовательно, различны и скорости их

Рис. 1. Наблюдение интерференции поляризованных лучей в параллельных лучах: а - схема; б - определение амплитуд колебаний, соответствующих схеме а .

распространения в К , вследствие чего на выходе пластины К между ними возникает разность фаз d=(2p/l)(n 0 -n е) , где l - толщина пластинки, l - длина волны падающего света. Анализатор N 2 из каждого луча А е и А 0 пропускает только составляющие с колебаниями, параллельными его направлению пропускания N 2 N 2 . Если гл. сечения поляризатора и анализатора скрещены (N 1 ^N 2 ) , то амплитуды слагающих А 1 и А 2 равны, а разность фаз между ними D=d+p. Т. к. эти составляющие когерентны и линейно поляризованы в одном направлении, то они интерферируют. В зависимости от величины D на к--л. участке пластинки наблюдатель видит этот участок тёмным или светлым (d=2kpl) в монохроматич. свете и различно окрашенным в белом свете (т.н. хроматич. поляризация). Если пластинка неоднородна по толщине пли по показателю преломления, то места её с одинаковыми этими параметрами будут соответственно одинаково тёмными или одинаково светлыми (или одинаково окрашенными в белом свете). Кривые одинаковой цветности наз. изохромами. Пример схемы наблюдения И. п. л. в сходящихся лунах показан на рис. 2. Сходящийся плоскополяризованный пучок лучей из линзы L 1 падает на пластинку, вырезанную из одноосного кристалла перпендикулярно его оптич. оси. При этом лучи разного наклона проходят разные пути в пластинке, а обыкновенный и необыкновенный лучи приобретают разность хода D=(2pl /lcosy)(n 0 -n е) , где y - угол между направлением распространения лучей и нормалью к поверхности кристалла. Наблюдаемая в этом случае интерференц. картина дана на рис. 1, а к ст. Коноскопические фигуры . Точки, соответствующие одинаковым разностям фаз D,

Рис. 2. Схема для наблюдения интерференции поляризованных лучей в сходящихся лучах: N 1 , - поляризатор; N 2 , - анализатор, К - пластинка толщиной l , вырезанная из одноосного двупреломляющего кристалла; L 1 , L 2 - линзы.

расположены по концентрич. окружности (тёмным или светлым в зависимости от D). Лучи, входящие в К с колебаниями, параллельными гл. плоскости или перпендикулярными ей, не разделяются на два слагающих и при N 2 ^N 1 не будут пропущены анализатором N 2 . В этих плоскостях получится тёмный крест. Если N 2 ||N 1 , крест будет светлым. И. п. л. применяется в

Интерференция поляризованных лучей – явление, возникающее при сложении когерентных поляризованных световых колебаний.

При нормальном падении естественного света на грань кристаллической пластинки, параллельную оптической оси, обыкновенный и необыкновенный лучи распространяются не разделяясь, но с различной скоростью. Из пластинки выйдут два поляризованных во взаимно перпендикулярных плоскостях луча, между которыми будет существовать оптическая разность хода

или разность фаз

где – толщина пластинки, – длина света в вакууме. Если поставить поляризатор на пути лучей, вышедших из кристаллической пластинки, то колебания обоих лучей после прохождения через поляризатор будут лежать в одной плоскости. Но интерферировать они не будут, так как не являются когерентными, хотя и получены путем разделения света от одного источника. Обыкновенный и необыкновенный лучи содержат колебания, принадлежащие разным цугам волн, испущенных отдельными атомами. Если на кристаллическую пластинку направить плоскополяризованный свет, то колебания каждого цуга разделяются между обыкновенным и необыкновенным лучами в одинаковой пропорции, поэтому выходящие лучи оказываются когерентными.

Интерференцию поляризованных лучей можно наблюдать при прохождении линейно поляризованного света (полученного при пропускании естественного света через поляризатор ) через кристаллическую пластинку, проходя через которые луч разделяется на два когерентных, поляризованных

во взаимно перпендикулярных плоскостях, луча. Кристаллическая пластинка обеспечивает когерентность обыкновенного и необыкновенного лучей и создает между ними разность фаз согласно соотношению (6.38.9).

Для наблюдения интерференционной картины поляризованных лучей необходимо повернуть плоскость поляризации одного из лучей до совпадения с плоскостью поляризации другого луча или выделить из обоих лучей компоненты с одинаковым направлением колебаний. Это осуществляется с помощью поляризатора , который сводит колебания лучей в одну плоскость. На экране можно будет наблюдать интерференционную картину.

Интенсивность результирующего колебания где – угол между плоскостью поляризатора и оптической осью кристаллической пластинки , – угол между плоскостями поляризаторов и Интнсивность и окраска прошедшего через систему света зависит от длины волны. При вращении одного из поляризаторов окраска интерференционной картины будет изменяться. Если толщина пластинки в разных местах неодинакова, то на экране наблюдается пестроокрашенная картина.

Контрольные вопросы для самоподготовки студентов :

1. Что такое дисперсия света?


2. По каким признакам можно отличить спектры, полученные с помощью призмы и дифракционной решетки?

3. Что называется естественным светом? плоскополяризованным? частично поляризованным светом?

4. Сформулировать закон Брюстера.

5. Чем обусловлено двойное лучепреломление в оптически анизотропном одноосном кристалле?

6. Эффект Керра.

Литературные источники:

1. Трофимова, Т.И. Курс физики: учеб. пособие для вузов / Т.И. Трофимова. – М.: ACADEMIA, 2008.

2. Савельев, И.В. Курс общей физики: учеб. пособие для втузов: в 3-х томах / И.В.Савельев. – СПб.: Спец. лит., 2005.