В результате удалось прочитать текст, невидимый при обычном свете. Как это ему удалось? Ультрафиолетовые лучи, подчиняясь общим законам поглощения, отражения и преломления электромагнитных волн, вместе с тем поглощаются и отражаются рядом веществ иначе, чем видимые лучи. Одни вещества обладают свойством поглощать ультрафиолетовые лучи, другие, наоборот, беспрепятственно их пропускают, оставаясь в то же время непрозрачными для лучей видимого света. Под воздействием ультрафиолетовых лучей многие вещества люминесцируют, т. е. испускают видимый свет. Наблюдение этого свечения - самый удобный и распространенный способ исследования ультрафиолетовых лучей. При облучении изучаемого объекта (например, картины или документа) ультрафиолетовыми лучами становятся видны детали, невидимые при обычном освещении. Можно получать фотографии в ультрафиолетовых лучах (см.рис.1). Для этого на светочувствительный слой фотопластинки накладывают слой люминесцентного вещества, который преобразует невидимое излучение в видимое. Фотографии, полученные таким образом, оказываются более четкими, с большим количеством деталей.

Слайд 1

Инфракрасное излучение
Фотография, сделанная с использованием инфракрасных волн

Слайд 2

Определение
Определение. Инфракрасные лучи - это электромагнитное излучение подчиняющееся законам оптики и имеет ту же природу, что и видимый свет.
Точнее, это излучение, занимающее спектральную область между красным концом видимого света (с длиной волны l = 0,74 мкм) и коротковолновым радиоизлучением (l ~ 1-2 мм). Инфракрасную область спектра обычно условно разделяют на ближнюю (l от 0,74 до 2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм).

Слайд 3

История открытия
Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается. В 19 в. было доказано, что инфракрасное излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет.
В 1923 советский физик А. А. Глаголева-Аркадьева получила радиоволны с l ~ 80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к инфракрасному излучению и радиоволновому и, следовательно, все они имеют электромагнитную природу.

Слайд 4

Источники инфракрасного излучения
Мощным источником инфракрасного излучения является Солнце, около 50% излучения которого лежит в этой области. Значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на инфракрасное излучение.
При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только инфракрасное излучение. Также мощным источником является угольная электрическая дуга с температурой ~ 3900 К, а также различные газоразрядные лампы (импульсные и непрерывного горения).
Солнце – основной источник инфракрасного излучения

Слайд 5

Оптические свойства веществ в инфракрасной области спектра
Многие вещества, прозрачные в видимой области, оказываются непрозрачными в некоторых областях инфракрасного излучения и наоборот. Например, слой воды толщиной в несколько см непрозрачен для него с l > 1 мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны в инфракрасной (германий для l > 1,8 мкм, кремний для l > 1,0 мкм). Чёрная бумага прозрачна в далёкой инфракрасной области. Ряд веществ даже в толстых слоях (несколько см) прозрачен в достаточно больших участках инфракрасного спектра. Из таких веществ изготовляются различные оптические детали (призмы, линзы, окна и пр.) инфракрасных приборов. Например, стекло прозрачно до 2,7 мкм, кварц - до 4,0 мкм и от 100 мкм до 1000 мкм, каменная соль - до 15 мкм, йодистый цезий - до 55 мкм. Полиэтилен, парафин, тефлон, алмаз прозрачны для l > 100 мкм.
Черная бумага прозрачна в инфракрасной области

Слайд 6

Воздействие инфракрасных волн на человека
Инфракрасные волны - это обычное тепло, которое излучает любой объект, чья температура превышает -273оС, в том числе и тело человека. Инфракрасное излучение, с точки зрения физиологического воздействия на организм человека, имеет две очень важные характеристики - длину волны излучения (иногда ее заменяют частотой) и интенсивность.
Основным достоинством тепловых волн (в отличие от ультрафиолетовых) является их полная безвредность для организма человека во всем диапазоне - от видимого света (0.76 мкм) до дальнего (длинноволнового) инфракрасного излучения (1000 мкм). Но в этом огромном диапазоне есть одна узкая область, лежащая в длинноволновой части ИК-спектра, от 7 до 14 микрон, оказывающая на организм человека по-настоящему целительное воздействие. Эта часть инфракрасного излучения примерно соответствует тепловому излучению человеческого тела, длина волны которого равна 9.2-9.3 мкм, поэтому наш организм воспринимает его как «свой». Иногда этот диапазон называют «Лучи жизни», тепло этой частоты воздействует на клеточном уровне, вызывая сильный терапевтический эффект.
Лечебная ИК лампа

Слайд 7

Инфракрасные волны в промышленности и науке
Сегодня инфракрасные волны представляют одну из перспективнейших областей. Приборы, использующие ИК-волны, встречаются везде – от научной лаборатории до квартиры. Это сенсорные экраны и телевизионные пульты, разнообразные устройства с поддержкой интерфейса IrDA.
Среди областей науки, использующих ИК-волны, особенно следует выделить hightech и здравоохранение.
Интерфейс IrDA
Соединение сотового телефона и КПК при помощи интерфейса IrDA

Видимый свет – это то электромагнитное излучение, которое воспринимает человеческий глаз. Диапазон лучей видимого света лежит в пределах от 400 до 700 нм. При длине волны более 700 нм начинается инфракрасный спектр, лучи которого воспринимаются как тепло; а при длине волны менее 400 нм находится диапазон ультрафиолетового (УФ) излучения.

История открытия инфракрасного излучения В 1800 году знаменитый английский астроном и оптик В. Гершель, разложив солнечный свет в спектр, поместил за его красный край термометр, у которого нижняя часть резервуара с ртутью была зачернена сажей. Обнаружив повышение температуры, он пришёл к выводу, что термометр в этом месте нагревается какими-то невидимыми лучами. Позже они были названы инфракрасными.

Определение Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым излучением 50% энергии излучения Солнца приходится именно на инфракрасные лучи. Искусственными источниками этого излучения являются лампы накаливания с вольфрамовой нитью.

Некоторые свойства инфракрасного излучения Источники излучения: Солнце, звёзды, космос, лазеры, электролампы. Инфракрасные лучи испускают все тела.

Тепло – это инфракрасное излучение, испускаемое движущимися молекулами. Когда молекулы двигаются быстрее, они выделяют больше инфракрасного излучения, и объект воспринимается как более теплый. Чем теплее объект, тем быстрее он излучает.

Применение инфракрасного излучения в криминалистике На свойстве инфракрасных лучей поглощаться и отражаться некоторыми веществами не так, как видимый свет, основано их применение в судебно-экспертной практике. Например, фотографирование в инфракрасных лучах позволяет выявить подчистки в документах, читать залитые или замазанные тексты.

Применение инфракрасного излучения в криминалистике Инфракрасный излучатель применяется в приборах для проверки денег. Нанесённые на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надёжной защитой от подделок.

Применение инфракрасного излучения в медицине Впервые биологическое действие инфракрасного излучения было обнаружено по отношению к культурам клеток, растениям, животным. В большинстве случаев, подавлялось развитие микрофлоры. У людей и животных ускорялись процессы обмена, как следствие, активизации кровотока. Было доказано, что инфракрасное излучение оказывает одновременно болеутоляющее, антиспазматическое, противовоспалительное, циркуляторное, стимулирующее и отвлекающее действие.

Применение инфракрасного излучения в медицине Инфракрасное излучение также позволяет ослабить действие ядохимикатов, ускоряет процесс выздоровления больных гриппом и могут служить мерой профилактики простудных заболеваний.

Помимо этого, инфракрасное излучение применяется в таких отраслях, как Пищевая промышленность Дистанционное управление Покраска Стерилизация пищевых продуктов Антикоррозийное средство

История открытия ультрафиолетового излучения После открытия инфракрасного излучения немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что почернение хлористого серебра, под действием невидимого излучения за пределами фиолетовой области спектра происходит сильнее и быстрее, чем под действием света. Этот вид излучения был назван ультрафиолетовым.

Определение Ультрафиолетовое излучение (ультрафиолетовые лучи, УФизлучение) - электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Термин происходит от лат. ultra - «сверх» , «за пределами» и «фиолетовый» . В разговорной речи может использоваться также наименование «ультрафиолет» .

Некоторые свойства ультрафиолетового излучения Ультрафиолетовое излучение возникает при изменении состояний электронов на внешних оболочках атома или молекул. Ультрафиолетовое излучение поглощается стеклом поэтому для его исследования применяют линзы и призмы из кварца. Ультрафиолетовое излучение имеет меньшую длину волны, чем фиолетовые лучи и преломляется сильнее фиолетовых лучей.

Некоторые свойства ультрафиолетового излучения Источники излучения: Солнце, звёзды, туманности, космос, лазеры, лампы дневного света, электросварка и тд. Ультрафиолетовое излучение – действует на фотоэлементы, люминесцентные вещества, оказывает бактерицидное действие, вызывает фотохимические реакции, поглощается озоном, обладает лечебными свойствами, невидимо.

Применение ультрафиолетового излучения в медицине Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.

Применение ультрафиолетового излучения в хозяйстве Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Ультрафиолеторовое излучение также может использоваться для Стерилизация воздуха и твёрдых поверхностей Дезинфекция питьевой воды УФ - спектрометрия Анализ минералов Ловля насекомых Искусственный загар

Ультрафиолетовое излучение.

Презентация к уроку «Шкала электромагнитных волн»

учителя МАОУ лицея №14

Ермаковой Т.В.


Определение:

Уф- электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями.

Длины волн УФ-излучения лежат в интервале от 10 до 400 нм.

Термин происходит от лат.» ultra» - сверх, за пределами и фиолетовый.


История открытия.

После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением.


Природные источник

Основной источник ультрафиолетового излучения на Земле - Солнце. Общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • от концентрации атмосферного озона над земной поверхностью;
  • от высоты Солнца над горизонтом;
  • от высоты над уровнем моря;
  • от атмосферного рассеивания;
  • от состояния облачного покрова;
  • от степени отражения УФ-лучей от поверхности (воды, почвы)

  • Лампа чёрного света - лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра и даёт крайне мало видимого света. Ее используют для защиты документов от подделки,их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения.

Обеззараживание воздуха и поверхностей.

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека.

Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных.


Ловля насекомых . Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.


1.Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам. Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак и преждевременное старение.


Воздействие на здоровье человека

2.Действие на глаза

Ультрафиолетовое излучение средневолнового диапазона (280-315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение - ожог роговицы. Это проявляется усиленным слезотечением, светобоязнью.


Воздействие на здоровье человека

Защита глаз

Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.