Азотистая кислота существует либо в растворе, либо в газовой фазе. Она неустойчива и при нагревании распадается в парах:

2HNO 2 «NO+NO 2 +Н 2 О

Водные растворы этой кислоты при нагревании разлагаются:

3HNO 2 «HNO 3 +H 2 O+2NO

Эта реакция обратимая, поэтому, хотя растворение NO 2 и со­провождается образованием двух кислот: 2NO 2 + Н 2 O=HNO 2 +HNO 3

практически взаимодействием NO 2 с водой получают HNO 3:

3NO 2 +H 2 O=2HNO 3 +NO

По кислотным свойствам азотистая кислота лишь немного сильнее уксусной. Соли ее называются нитритами и в отличие от самой кислоты являются устойчивыми. Из растворов ее солей можно добавлением серной кислоты получить раствор HNO 2:

Ba(NO 2) 2 +H 2 SO 4 =2HNO 2 +BaSO 4 ¯

На основе данных о ее соединениях предполагают два типа структуры азотистой кислоты:

которым соответствуют нитриты и нитросоединения. Нитриты активных металлов имеют структуру I типа, а малоактивных ме­таллов - II типа. Почти все соли этой кислоты хорошо раствори­мы, но нитрит серебра труднее всех. Все соли азотистой кислоты ядовиты. Для химической технологии важны KNO 2 и NaNO 2 , которые необходимы для производства органических красите­лей. Обе соли получают из оксидов азота:

NO+NO 2 +NaOH=2NaNO 2 +Н 2 О или при нагревании их нитратов:

KNO 3 +Pb=KNO 2 +PbO

Pb необходим для связывания выделяющегося кислорода.

Из химических свойств HNO 2 сильнее выражены окислитель­ные, при этом сама она восстанавливается до NO:

Однако можно привести много примеров таких реакций, где азотистая кислота проявляет восстановительные свойства:

Определить присутствие азотистой кислоты и ее солей в рас­творе можно, если прибавить раствор иодида калия и крахмала. Нитрит-ион окисляет анион иода. Эта реакция требует присутст­вия Н + , т.е. протекает в кислой среде.

Азотная кислота

В лабораторных условиях азотную кислоту можно получить действием концентрированной серной кислоты на нитраты:

NaNO 3 +H 2 SO 4(к) =NaHSO 4 +HNO 3 Реакция протекает при слабом нагревании.

Получение азотной кислоты в промышленных масштабах осуществляется каталитическим окислением аммиака кислоро­дом воздуха:

1. Вначале смесь аммиака с воздухом пропускают над платино­вым катализатором при 800°С. Аммиак окисляется до оксида азота (II):

4NH 3 + 5O 2 =4NO+6Н 2 О

2 . При охлаждении происходит дальнейшее окисление NO до NO 2: 2NO+O 2 =2NO 2

3. Образующийся оксид азота (IV) растворяется в воде в присутст­вии избытка О 2 с образованием HNO 3: 4NO 2 +2Н 2 O+O 2 =4HNO 3

Исходные продукты - аммиак и воздух - тщательно очища­ют от вредных примесей, отравляющих катализатор (сероводо­род, пыль, масла и т.п.).

Образующаяся кислота является разбавленной (40-60% -ной). Концентрированную азотную кислоту (96-98% -ную) получают перегонкой разбавленной кислоты в смеси с концентрированной серной кислотой. При этом испаряется только азотная кислота.

Физические свойства

Азотная кислота - бесцветная жидкость, с едким запахом. Очень гигроскопична, «дымит» на воздухе, т.к. ее пары с влагой воздуха образуют капли тумана. Смешивается с водой в любых соотношениях. При -41,6°С переходит в кристаллическое состо­яние. Кипит при 82,6°С.

В HNO 3 валентность азота равна 4, степень окисления +5. Структурную формулу азотной кислоты изображают так:

Оба атома кислорода, связанные только с азотом, равноцен­ны: они находятся на одинаковом расстоянии от атома азота и несут каждый по половинному заряду электрона, т.е. четвертая часть азота разделена поровну между двумя атомами кислорода.

Электронную структуру азотной кислоты можно вывести так:

1. Атом водорода связывается с атомом кислорода ковалентной связью:

2. За счет неспаренного электрона атом кислорода образует кова­лентную связь с атомом азота:

3. Два неспаренных электрона атома азота образуют ковалентную связь со вторым атомом кислорода:

4. Третий атом кислорода, возбуждаясь, образует свободную 2р- орбиталь путем спаривания электронов. Взаимодействие непо­деленной пары азота со свободной орбиталью третьего атома кис­лорода приводит к образованию молекулы азотной кислоты:

Химические свойства

1. Разбавленная азотная кислота проявляет все свойства кислот. Она относится к сильным кислотам. В водных растворах диссо­циирует:

HNO 3 «Н + +NO - 3 Под действием теплоты и на свету частично разлагается:

4HNO 3 =4NO 2 +2Н 2 O+O 2 Поэтому хранят ее в прохладном и темном месте.

2. Для азотной кислоты характерны исключительно окислитель­ные свойства. Важнейшим химическим свойством является взаимодействие почти со всеми металлами. Водород при этом никогда не выделяется. Восстановление азотной кислоты зави­сит от ее концентрации и природы восстановителя. Степень окисления азота в продуктах восстановления находится в ин­тервале от +4 до -3:

HN +5 O 3 ®N +4 O 2 ®HN +3 O 2 ®N +2 O®N +1 2 O®N 0 2 ®N -3 H 4 NO 3

Продукты восстановления при взаимодействии азотной кисло­ты разной концентрации с металлами разной активности при­ведены ниже в схеме.

Концентрированная азотная кислота при обычной температу­ре не взаимодействует с алюминием, хромом, железом. Она пере­водит их в пассивное состояние. На поверхности образуется плен­ка оксидов, которая непроницаема для концентрированной кислоты.

3. Азотная кислота не реагирует с Pt, Rh, Ir, Та, Au. Платина и золото растворяются в «царской водке» - смеси 3 объемов концентрированной соляной кислоты и 1 объема концентриро­ванной азотной кислоты:

Au+НNO 3 +3НСl= AuСl 3 +NO­+2Н 2 О НСl+AuСl 3 =H

3Pt+4HNO 3 +12НСl=3PtCl 4 +4NO­+8H 2 O 2HCl+PtCl 4 =H 2

Действие «царской водки» заключается в том, что азотная кис­лота окисляет соляную до свободного хлора:

HNO 3 +HCl=Сl 2 +2Н 2 О+NOCl 2NOCl=2NO+Сl 2 Выделяющийся хлор соединяется с металлами.

4. Неметаллы окисляются азотной кислотой до соответствующих кислот, а она в зависимости от концентрации восстанавливает­ся до NO или NO 2:

S+бНNO 3(конц) =H 2 SO 4 +6NO 2 ­+2Н 2 ОР+5НNO 3(конц) =Н 3 РO 4 +5NO 2 ­+Н 2 О I 2 +10HNO 3(конц) =2HIO 3 +10NO 2 ­+4Н 2 О 3Р+5HNO 3(p азб) +2Н 2 О= 3Н 3 РО 4 +5NO­

5. Она также взаимодействует с органическими соединениями.

Соли азотной кислоты называются нитратами, представляют собой кристаллические вещества, хорошо растворимые в воде. Их получают при действии HNO 3 на металлы, их оксиды и гидрокси­ды. Нитраты калия, натрия, аммония и кальция называются се­литрами. Селитры используются главным образом как минераль­ные азотные удобрения. Кроме того, KNO 3 применяют для приготовления черного пороха (смесь 75% KNO 3 , 15% С и 10% S). Из NH 4 NO 3 , порошка алюминия и тринитротолуола изготавлива­ют взрывчатое вещество аммонал.

Соли азотной кислоты при нагревании разлагаются, причем продукты разложения зависят от положения солеобразующего металла в ряду стандартных электродных потенциалов:

Разложение при нагревании (термолиз) - важное свойство солей азотной кислоты.

2KNO 3 =2KNO 2 +O 2 ­

2Cu(NO 3) 2 =2CuO+NO 2 ­+O 2 ­

Соли металлов, расположенных в ряду левее Mg, образуют нитриты и кислород, от Mg до Cu - оксид металла, NO 2 и кисло­род, после Си - свободный металл, NO 2 и кислород.

Применение

Азотная кислота - важнейший продукт химической про­мышленности. Большие количества расходуются на приготовле­ние азотных удобрений, взрывчатых веществ, красителей, пласт­масс, искусственных волокон и др. материалов. Дымящая

азотная кислота применяется в ракетной технике в качестве окис­лителя ракетного топлива.

Три из пяти оксидов азота реагируют с водой, образуя азотистую Н1М0 2 и азотную HN0 3 кислоты.

Азотистая кислота слабая и неустойчивая. Она может присутствовать лишь в небольшой концентрации в охлажденном водном растворе. Практически ее получают действием серной кислоты на раствор соли (чаще всего NaN0 2) при охлаждении почти до 0°С. При попытке повышения концентрации азотистой кислоты из раствора на дно сосуда выделяется синяя жидкость - оксид азота(Ш). При повышении температуры азотистая кислота разлагается но реакции

Оксид азота(1У) реагирует с водой, давая две кислоты (см. выше). Но с учетом разложения азотистой кислоты суммарная реакция N 2 0 4 с водой при нагревании записывается так:

Соли азотистой кислоты (нитриты) достаточно устойчивы. Нитриты калия или натрия можно получить растворением оксида азота(1У) в щелочи:

Образование смеси солей вполне понятно, так как, реагируя с водой, N 2 0 4 образует две кислоты. Нейтрализация щелочью предотвращает разложение неустойчивой азотистой кислоты и приводит к смещению равновесия реакции N 2 0 4 с водой полностью вправо.

Нитриты щелочных металлов получаются также при термическом разложении их нитратов:

Соли азотистой кислоты хорошо растворимы в воде. Растворимость некоторых нитритов исключительно высока. Например, при 25°С коэффициент растворимости нитрита калия равен 314, т.е. в 100 г воды растворяется 314 г соли. Нитриты щелочных металлов термически устойчивы и плавятся без разложения.

В кислой среде нитриты действуют как довольно сильные окислители. Фактически окислительные свойства проявляет образующаяся слабая азотистая кислота. Из растворов иодидов выделяется иод:

Иод обнаруживается по окраске, а оксид азота - по характерному запаху. Азот переходит из СО +3 в СО +2.

Окислители более сильные, чем азотистая кислота, окисляют нитриты до нитратов. В кислой среде раствор перманганата калия обесцвечивается при добавлении нитрита натрия:

Азот переходит из СО +3 в СО +5. Таким образом, азотистая кислота и нитриты проявляют окислительно-восстановительную двойственность.

Нитриты ядовиты, так как они окисляют в гемоглобине железо(П) до железа(Н1) и гемоглобин теряет способность присоединять и переносить кислород в крови. Применение большого количества азотных удобрений значительно ускоряет рост растений, но при этом они содержат в повышенной концентрации нитраты и нитриты. Употребление выращенных таким образом овощей и ягод (арбузы, дыни) приводит к отравлениям.

Огромное практическое значение имеет азотная кислота. В ее свойствах сочетаются сила кислоты (практически полная ионизация в водном растворе), сильные окислительные свойства и способность передавать нитро- группу N0 2 + другим молекулам. Азотную кислоту применяют в больших количествах для производства удобрений. В этом случае она служит источником необходимого для растений азота. Ее применяют для растворения металлов и получения хорошо растворимых солей - нитратов.

Чрезвычайно важным направлением использования азотной кислоты является нитрование органических веществ для получения разнообразных органических продуктов, содержащих нитрогруппы. Среди органических нитросоединений есть лекарственные вещества, красители, растворители, взрывчатые вещества. Ежегодно мировое производство азотной кислоты превышает 30 млн т.

В период до промышленного освоения синтеза аммиака и его окисления азотную кислоту получали из нитратов, например из чилийской селитры NaN0 3 . Селитру нагревали с концентрированной серной кислотой:

Выделяющиеся пары азотной кислоты в охлаждаемом приемнике конденсируются в жидкость с высоким содержанием HN0 3 .

В настоящее время азотную кислоту получают по различным вариантам метода, в котором исходным веществом является оксид азота(П). Как следует из рассмотрения свойств азота, его оксид NO можно получить из азота и кислорода при температуре более 2000°С. Поддержание такой высокой температуры требует большой затраты энергии. Метод был технически осуществлен в 1905 г. в Норвегии. Нагретый воздух проходил через зону горения вольтовой дуги при температуре 3000-3500°С. Выходящие из устройства газы содержали всего 2-3% оксида азота(Н). К 1925 г. мировое производство азотных удобрений по этому способу достигло 42 000 т. По современным масштабам производства удобрений - это очень мало. В дальнейшем расширение производства азотной кислоты пошло по пути окисления аммиака до оксида азота(И).

При обычном горении аммиака образуются азот и вода. Но при проведении реакции при более низкой температуре с применением катализатора окисление аммиака заканчивается образованием NO. Появление NO при пропускании смеси аммиака и кислорода через платиновую сетку было известно уже давно, но этот катализатор не дает достаточно высокого выхода оксида. Использовать этот процесс для заводского производства удалось только в XX в., когда был найден более эффективный катализатор - сплав платины и родия. Металл родий, оказавшийся чрезвычайно необходимым в производстве азотной кислоты, приблизительно в 10 раз более редок, чем платина. С катализатором Pt/Rh в смеси аммиака и кислорода определенного состава при 750°С реакция

дает выход NO до 98%. Этот процесс термодинамически менее выгоден, чем сгорание аммиака до азота и воды (см. выше), но катализатор обеспечивает быстрое соединение атомов азота, остающихся после потери водорода молекулой аммиака, с кислородом, предотвращая образование молекул N 2 .

При охлаждении смеси, содержащей оксид азота(П) и кислород, образуется оксид азота(1У) N0 2 . Далее применяются разные варианты превращения N0 2 в азотную кислоту. Разбавленную азотную кислоту получают растворением NQ 2 в воде при повышенной температуре. Реакция приведена выше (с. 75). Азотную кислоту с массовой долей до 98% получают по реакции в смеси жидкого N 2 0 4 с водой в присутствии газообразного кислорода под большим давлением. В этих условиях образующийся одновременно с азотной кислотой оксид азота(П) успевает окисляться кислородом до N0 2 , который сразу же реагирует с водой. Получается следующая суммарная реакция:

Всю цепочку последовательных реакций превращения атмосферного азота в азотную кислоту можно представить так:


Реакции оксида азота(1У) с водой и кислородом идут довольно медленно, и практически не удается достигнуть полного его превращения в азотную кислоту. Поэтому на заводах, производящих азотную кислоту, всегда происходит выброс оксидов азота в атмосферу. Из заводской трубы выходит рыжеватый дым - «лисий хвост». Окраска дыма обусловлена присутствием N0 2 . На значительном пространстве вокруг большого завода от оксидов азота погибают леса. Особенно чувствительны к воздействию N0 2 хвойные породы деревьев.

Безводная азотная кислота - бесцветная жидкость с плотностью 1,5 г/см 3 , кипящая при 83°С и замерзающая при -41,б°С в прозрачное кристаллическое вещество. На воздухе азотная кислота подобно концентрированной соляной кислоте дымит, так как пары кислоты образуют с водяным паром воздуха капли тумана. Поэтому азотная кислота с малым содержанием воды называется дымящей. Она, как правило, имеет желтую окраску, так как под действием света разлагается с образованием N0 2 . Дымящая кислота применяется сравнительно редко.

Обычно азотная кислота выпускается промышленностью в виде водного раствора с массовой долей 65-68%. Такой раствор называют концентрированной азотной кислотой. Растворы с массовой долей HN0 3 менее 10% - разбавленная азотная кислота. Раствор с массовой долей 68,4% (плотность 1,41 г/см 3) представляет собой азеотропную смесь , кипящую при 122°С. Азеотропная смесь характеризуется одинаковым составом как жидкости, так и пара над ней. Поэтому перегонка азеотропной смеси не приводит к изменению ее состава. В концентрированной кислоте наряду с обычными молекулами HN0 3 присутствуют малодиссоциироваиные молекулы ортоазотной кислоты H 3 N0 4 .

Концентрированная азотная кислота пассивирует поверхность некоторых металлов, например железа, алюминия, хрома. При контакте этих металлов с концентрированной HN() 3 химическая реакция не идет. Это значит, что они перестают реагировать с кислотой. Азотную кислоту можно транспортировать в стальных цистернах.

Как дымящая, так и концентрированная азотная кислота является сильным окислителем. Тлеющий уголь вспыхивает при соприкосновении с азотной кислотой. Капли скипидара, попадая в азотную кислоту, воспламеняются, образуя большое пламя (рис. 20.3). Концентрированная кислота окисляет при нагревании серу и фосфор.

Рис. 20.3.

Азотная кислота в смеси с концентрированной серной кислотой проявляет основные свойства. От молекулы HN0 3 отщепляется гидроксид-ион, и образуется ион нитроил (нитроний) NOJ:

Равновесная концентрация нитрония небольшая, но такая смесь нитрует органические вещества при участии этого иона. Из данного примера следует, что в зависимости от характера растворителя поведение вещества может коренным образом измениться. В воде HN0 3 проявляет свойства сильной кислоты, а в серной кислоте оказывается основанием.

В разбавленных водных растворах азотная кислота практически полностью ионизирована.

В концентрированных растворах азотной кислоты в качестве окислителя действуют молекулы HN0 3 , а в разбавленных - ионы N0 3 при поддержке кислой среды. Поэтому азот в зависимости от концентрации кислоты и природы металла восстанавливается до разных продуктов. В нейтральной среде, т. е. в солях азотной кислоты, ион N0 3 становится слабым окислителем, но при добавлении сильной кислоты к нейтральным растворам нитратов последние действуют как азотная кислота. По силе окислительных свойств в кислой среде ион N0 3 сильнее, чем Н + . Отсюда вытекает следующее важное следствие.

При действии азотной кислоты на металлы вместо водорода выделяются различные оксиды азота, а в реакциях с активными металлами азот восстанавливается до иона NH*.

Рассмотрим важнейшие примеры реакций металлов с азотной кислотой. Медь в реакции с разбавленной кислотой восстанавливает азот до NO (см. выше), а в реакции с концентрированной кислотой - до N0 2:

Железо пассивируется концентрированной азотной кислотой, а кислотой средней концентрации окисляется до степени окисления +3:

Алюминий реагирует с сильно разбавленной азотной кислотой без выделения газа, так как азот восстанавливается до СО -3, образуя соль аммония:


Соли азотной кислоты, или нитраты, известны для всех металлов. Нередко применяется старое название некоторых нитратов - селитра (натриевая селитра, калийная селитра). Это единственное семейство солей, в котором все соли растворимы в воде. Ион N0 3 не окрашен. Поэтому нитраты или оказываются бесцветными солями, или имеют окраску входящего в их состав катиона. Большинство нитратов выделяются из водных растворов в виде кристаллогидратов. Безводными нитратами являются NH 4 N0 3и нитраты щелочных металлов, кроме LiN0 3 *3H 2 0.

Нитраты часто применяют для проведения обменных реакций в растворах. Нитраты щелочных металлов, кальция и аммония в больших количествах используются в качестве удобрений. На протяжении нескольких веков нитрат калия имел огромное значение в военном деле, так как был компонентом единственного взрывчатого состава - пороха. Его получали главным образом из мочи лошадей. Содержащийся в моче азот при участии бактерий в особых селитряных кучах переходил в нитраты. При выпаривании получавшейся жидкости в первую очередь кристаллизовался нитрат калия. Этот

пример показывает, насколько ограничены были источники получения соединений азота до освоения промышленностью синтеза аммиака.

Термическое разложение нитратов происходит при температурах ниже 500°С. При нагревании нитратов активных металлов они превращаются в нитриты с выделением кислорода (см. выше). Нитраты менее активных металлов при термическом разложении дают оксид металла, оксид азота(1У) и кислород:

HNO 2 имеет слабый характер. Весьма неустойчива, может быть только в разбавленных растворах:

2 HNO 2 NO + NO 2 + H 2 O .

Соли азотистой кислоты называются нитритами или азотистокислыми . Нитриты гораздо более устойчивы, чем HNO 2 , все они токсичны.

2HNO 2 + 2HI = I 2 + 2NO + 2H 2 O,

HNO 2 + H 2 O 2 = HNO 3 + H 2 O,

5KNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5KNO 3 + K 2 SO 4 + 2MnSO 4 + 3H 2 O.

Строение азотистой кислоты.

В газовой фазе планарная молекула азотистой кислоты существует в виде двух конфигураций цис- и транс-:

При комнатной температуре преобладает транс-изомер: эта структура является более устойчивой. Так, для цис - HNO 2 (г) DG° f = −42,59 кДж/моль, а для транс-HNO 2 (г) DG = −44,65 кДж/моль.

Химические свойства азотистой кислоты.

В водных растворах существует равновесие:

Нагреваясь, раствор азотистой кислоты распадается с выделением NO и образованием азотной кислоты:

HNO 2 в водных растворах диссоциирует (K D =4,6·10 −4), немного сильнее уксусной кислоты. Легко вытесняется более сильными кислотами из солей:

Азотистая кислота проявляет окислительные и восстановительные свойства. При действии более сильных окислителей (пероксид водорода , хлор , перманганат калия) происходит окисление в азотную кислоту:

Кроме того, она может окислять вещества, которые обладают восстановительными свойствами:

Получение азотистой кислоты.

Азотистую кислоту получают при растворении оксида азота (III) N 2 O 3 в воде:

Кроме того, она образуется при растворении в воде оксида азота (IV) NO 2 :

.

Применение азотистой кислоты.

Азотистая кислота применяется для диазотирования первичных ароматических аминов и образования солей диазония. Нитриты применяются в органическом синтезе в производстве органических красителей.

Физиологическое действие азотистой кислоты.

Азотистая кислота является токсичной и обладает ярко выраженным мутагенным действием, так как является деаминирующим агентом.

HNO3, кислородосодержащая одноосновная сильная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы.

Получается при каталитическом окислении синтетического аммиака на платино-родиевых катализаторах (метод Габера) до смеси оксидов азота (нитрозных газов), с дальнейшим поглощением их водой

4NH3 + 5O2 (Pt) > 4NO + 6H2O

2NO + O2 > 2NO2 4NO2 + O2 + 2H2O > 4HNO3 Концентрация полученной таким методом азотной кислоты колеблется, в зависимости от технологического оформления процесса от 45 до 58 %. Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:

4KNO3 + 2(FeSO4 7H2O) (t°) > Fe2O3 + 2K2SO4 + 2HNO3^ + NO2^ + 13H2O

Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:

KNO3 + H2SO4(конц.) (t°) > KHSO4 + HNO3^

Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.

Применение:

в производстве минеральных удобрений;

в военной промышленности;

в фотографии - подкисление некоторых тонирующих растворов;

в станковой графике - для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише).

1.Разбавленная азотная кислота проявляет все свойства сильных кислот, в водных растворах она диссоциирует по следующей схеме:

HNO3 H+ + NO3–,

безводная кислота:

2HNO3® NO2+ + NO3–+ H2O.

Постепенно, особенно на свету или при нагревании азотная кислота разлагается, при хранении раствор становится коричневатым из-за диоксида азота:

4HNO3 4NO2 + 2H2O + O2.

2.Азотная кислота взаимодействует почти со всеми металлами. Разбавленная азотная кислота со щелочными и щелочноземельными металлами, а также с железом и цинком образует соответствующие нитраты, нитрат аммония или гемиоксид азота в зависимости от активности металла и воду:

4Mg + 10HNO3® 4Mg(NO3)2 + N2O + 5H2O,

С тяжелыми металлами разбавленная кислота образует соответствующие нитраты, воду и выделяется оксид азота, а в случае более сильного разбавления азот:

5Fe + 12HNO3(оч. разб.)®5Fe(NO3)3 + N2+ 6H2O,

3Cu + 8HNO3® 3Cu(NO3)2 + 2NO + 4H2O.

Концентрированная азотная кислота при взаимодействии со щелочными и щелочными металлами образует соответствующие нитраты, воду и выделяется гемиоксид азота:

8Na + 10HNO3® 8NaNO3 + N2O + 5H2O.

Такие металлы как железо, хром, алюминий, золото, платина, иридий, тантал концентрированная кислота пассивирует, т.е. на поверхности металла образуется пленка оксидов не проницаемая для кислоты. Другие тяжелые металлы при взаимодействии с концентрированной азотной кислотой образуют соответствующие нитраты, воду и выделяется оксид или диоксид азота:

3Hg + 8HNO3(хол.)®3Hg(NO3)2 + 2NO + 4H2O,

Hg + 4HNO3(гор.)®Hg(NO3)2 + 2NO2+ 2H2O,

Ag + 2HNO3® AgNO3 + NO2+ 2H2O.

3.Азотная кислота способна растворить золото, платину и другие благородные металлы, но в смеси с соляной кислотой. Их смесь в отношении три объема концентрированной соляной кислоты и один объем концентрированной азотной кислоты называют “царской водкой”. Действие царской водки заключается в том, что азотная кислота окисляет соляную до свободного хлора, который соединяется с металлами:

HNO3 + HCl ® Cl2 + 2H2O + NOCl,

2NOCl ® 2NO + Cl2.

Царская водка способна растворить золото, платину, родий, иридий и тантал, которые не растворяются ни в азотной, а уж тем более соляной кислоте:

Au + HNO3 + 3HCl ® AuCl3 + NO + 2H2O,

HCl + AuCl3® H;

3Pt + 4HNO3 + 12HCl ® 3PtCl4 + 4NO + 8H2O,

2HCl + PtCl4® H2.

4.Неметаллы также окисляются азотной кислотой до соответствующих кислот, разбавленная кислота выделяет оксид азота:

3P + 5HNO3 + 2H2O ® 3H3PO4 + 5NO ,

концентрированная кислота выделяет диоксид азота:

S + 6HNO3® H2SO4 + 6NO2+ 2H2O,

зотная кислота способна также окислять некоторые неорганические соединения:

3H2S + 8HNO3® 3H2SO4 + 8NO + 4H2O.

HNO2 - слабая одноосновная кислота, существует только в разбавленных водных растворах, окрашенных в слабый голубой цвет, и в газовой фазе. Соли азотистой кислоты называются нитритами или азотистокислыми. Нитраты гораздо более устойчивы, чем HNO2, все они токсичны.

В газовой фазе планарная молекула азотистой кислоты существует в виде двух конфигураций цис- и транс-. При комнатной температуре преобладает транс-изомер

Хим. св-ва

В водных растворах существует равновесие:

2HNO2 - N2O3 + H2O - NO^ + NO2^ + H2O

При нагревании раствора азотистая кислота распадается с выделением NO и NO2:

3HNO2 - HNO3 + 2NO^ + H2O.

HNO2 немного сильнее уксусной кислоты. Легко вытесняется более сильными кислотами из солей:

H2SO4 + Ba(NO2)2 > BaSO4v + HNO2.

Азотистая кислота проявляет как окислительные, так и восстановительные свойства. При действии более сильных окислителей (Н2О2, КМпО4) окисляется в HNO3:

2HNO2 + 2HI > 2NO^ + I2v + 2H2O;

5HNO2 + 2HMnO4 >2Mn(NO3)2 + HNO3 + 3H2O;

HNO2 + Cl2 + H2O > HNO3 + 2HCl.

Азотистая кислота применяется для диазотирования первичных ароматических аминов и образования солей диазония. Нитриты применяются в органическом синтезе при производстве органических красителей.

Получение:

N2O3 + H2O 2HNO2,

NaNO2 + H2SO4 (0° C)® NaHSO4 + HNO2

AgNO2 + HCl ® AgCl + HNO2

Свойства солей

Все нитраты хорошо растворимы в воде. С повышением температуры их растворимость сильно увеличивается. При нагревании нитраты распадаются с выделением кислорода. Нитраты аммония, щелочных и щелочноземельных металлов называют селитрами, например NaNO3 - натриевая селитра (чилийская селитра), KNO3 - калиевая селитра, NH4NO3 - аммиачная селитра. Нитраты получают действием азотной кислоты HNO3 на металлы, оксиды, гидроксиды, соли. Практически все нитраты хорошо растворимы в воде.

Нитраты устойчивы при обычной температуре. Они обычно плавятся при относительно низких температурах (200-600°C), зачастую с разложением.

Нитраты щелочных металлов разлагаются до нитритов с выделением кислорода (а при длительном нагревании ступенчато разлагаются на оксид металла, молекулярные азот и кислород, ввиду чего являются хорошими окислителями).

Нитраты металлов средней активности разлагаются при нагревании до оксидов металлов с выделением диоксида азота и кислорода.

Нитраты самых малоактивных металлов (благородные металлы) разлагаются в основном до свободных металлов с выделением диоксида азота и кислорода.

Нитраты являются достаточно сильными окислителями в твёрдом состоянии (обычно в виде расплава), но практически не обладают окислительными свойствами в растворе, в отличие от азотной кислоты.

Нитрит - соль азотистой кислоты HNO2. Нитриты термически менее устойчивы, чем нитраты. Применяются в производстве азокрасителей и в медицине.

HNO 2 Физические свойства Состояние твёрдое Молярная масса 47.0134 г/моль Плотность 1.685 (жидк) Термические свойства Т. плав. 42.35 °C Т. кип. 158 °C Химические свойства pK a 3.4 Растворимость в воде 548 г/100 мл Классификация Рег. номер CAS Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Азо́тистая кислота HNO 2 - слабая одноосновная кислота , существует только в разбавленных водных растворах, окрашенных в слабый голубой цвет, и в газовой фазе. Соли азотистой кислоты называются нитритами или азотистокислыми. Нитриты гораздо более устойчивы, чем HNO 2 , все они токсичны.

Строение

В газовой фазе планарная молекула азотистой кислоты существует в виде двух конфигураций цис- и транс- .

цис-изомер транс-изомер

При комнатной температуре преобладает транс-изомер: эта структура является более устойчивой. Так, для цис-HNO 2 (г) DG° f = −42,59 кДж/моль, а для транс-HNO 2 (г) DG = −44,65 кДж/моль.

Химические свойства

В водных растворах существует равновесие:

\mathsf{2HNO_2 \rightleftarrows N_2O_3 + H_2O \rightleftarrows NO \uparrow + NO_2 \uparrow + H_2O}

При нагревании раствора азотистая кислота распадается с выделением и образованием азотной кислоты :

\mathsf{3HNO_2 \rightleftarrows HNO_3 + 2NO \uparrow + H_2O}

HNO 2 является слабой кислотой. В водных растворах диссоциирует (K D =4,6·10 −4), немного сильнее уксусной кислоты . Легко вытесняется более сильными кислотами из солей :

\mathsf{H_2SO_4 + 2NaNO_2 \rightarrow Na_2SO_4 + 2HNO_2}

Азотистая кислота проявляет как окислительные, так и восстановительные свойства. При действии более сильных окислителей (пероксид водорода , хлор , перманганат калия) окисляется в азотную кислоту:

\mathsf{HNO_2 + H_2O_2 \rightarrow HNO_3 + H_2O} \mathsf{HNO_2 + Cl_2 + H_2O\rightarrow HNO_3 + 2HCl} \mathsf{5HNO_2 + 2KMnO_4 + HNO_3 \rightarrow 2Mn(NO_3)_2 + 2KNO_3 + 3H_2O}

В то же время она способна окислять вещества, обладающие восстановительными свойствами:

\mathsf{2HNO_2 + 2HI \rightarrow 2NO\uparrow + I_2 +2H_2O}

Получение

Азотистую кислоту можно получить при растворении оксида азота (III) N 2 O 3 в воде :

\mathsf{N_2O_3 + H_2O \rightarrow 2HNO_2} \mathsf{2NO_2 + H_2O \rightarrow HNO_3 + HNO_2}

Применение

Азотистая кислота применяется для диазотирования первичных ароматических аминов и образования солей диазония . Нитриты применяются в органическом синтезе при производстве органических красителей.

Физиологическое действие

Азотистая кислота токсична, причём обладает ярко выраженным мутагенным действием , поскольку является деаминирующим агентом .

Источники

Напишите отзыв о статье "Азотистая кислота"

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Азотистая кислота

Соня, как бы не веря своим ушам, смотрела во все глаза на Наташу.
– А Болконский? – сказала она.
– Ах, Соня, ах коли бы ты могла знать, как я счастлива! – сказала Наташа. – Ты не знаешь, что такое любовь…
– Но, Наташа, неужели то всё кончено?
Наташа большими, открытыми глазами смотрела на Соню, как будто не понимая ее вопроса.
– Что ж, ты отказываешь князю Андрею? – сказала Соня.
– Ах, ты ничего не понимаешь, ты не говори глупости, ты слушай, – с мгновенной досадой сказала Наташа.
– Нет, я не могу этому верить, – повторила Соня. – Я не понимаю. Как же ты год целый любила одного человека и вдруг… Ведь ты только три раза видела его. Наташа, я тебе не верю, ты шалишь. В три дня забыть всё и так…
– Три дня, – сказала Наташа. – Мне кажется, я сто лет люблю его. Мне кажется, что я никого никогда не любила прежде его. Ты этого не можешь понять. Соня, постой, садись тут. – Наташа обняла и поцеловала ее.
– Мне говорили, что это бывает и ты верно слышала, но я теперь только испытала эту любовь. Это не то, что прежде. Как только я увидала его, я почувствовала, что он мой властелин, и я раба его, и что я не могу не любить его. Да, раба! Что он мне велит, то я и сделаю. Ты не понимаешь этого. Что ж мне делать? Что ж мне делать, Соня? – говорила Наташа с счастливым и испуганным лицом.
– Но ты подумай, что ты делаешь, – говорила Соня, – я не могу этого так оставить. Эти тайные письма… Как ты могла его допустить до этого? – говорила она с ужасом и с отвращением, которое она с трудом скрывала.
– Я тебе говорила, – отвечала Наташа, – что у меня нет воли, как ты не понимаешь этого: я его люблю!
– Так я не допущу до этого, я расскажу, – с прорвавшимися слезами вскрикнула Соня.
– Что ты, ради Бога… Ежели ты расскажешь, ты мой враг, – заговорила Наташа. – Ты хочешь моего несчастия, ты хочешь, чтоб нас разлучили…
Увидав этот страх Наташи, Соня заплакала слезами стыда и жалости за свою подругу.
– Но что было между вами? – спросила она. – Что он говорил тебе? Зачем он не ездит в дом?
Наташа не отвечала на ее вопрос.
– Ради Бога, Соня, никому не говори, не мучай меня, – упрашивала Наташа. – Ты помни, что нельзя вмешиваться в такие дела. Я тебе открыла…
– Но зачем эти тайны! Отчего же он не ездит в дом? – спрашивала Соня. – Отчего он прямо не ищет твоей руки? Ведь князь Андрей дал тебе полную свободу, ежели уж так; но я не верю этому. Наташа, ты подумала, какие могут быть тайные причины?
Наташа удивленными глазами смотрела на Соню. Видно, ей самой в первый раз представлялся этот вопрос и она не знала, что отвечать на него.
– Какие причины, не знаю. Но стало быть есть причины!
Соня вздохнула и недоверчиво покачала головой.
– Ежели бы были причины… – начала она. Но Наташа угадывая ее сомнение, испуганно перебила ее.
– Соня, нельзя сомневаться в нем, нельзя, нельзя, ты понимаешь ли? – прокричала она.
– Любит ли он тебя?
– Любит ли? – повторила Наташа с улыбкой сожаления о непонятливости своей подруги. – Ведь ты прочла письмо, ты видела его?
– Но если он неблагородный человек?
– Он!… неблагородный человек? Коли бы ты знала! – говорила Наташа.