Одной из основных единиц в Международной системе единиц (СИ) является единица количества вещества – моль.

Моль это такое количество вещества, которое содержит столько структурных единиц данного вещества (молекул, атомов, ионов и др.), сколько атомов углерода содержится в 0,012 кг (12 г) изотопа углерода 12 С .

Учитывая, что значение абсолютной атомной массы для углерода равно m (C) = 1,99 · 10  26 кг, можно рассчитать число атомов углерода N А , содержащееся в 0,012 кг углерода.

Моль любого вещества содержит одно и то же число частиц этого вещества (структурных единиц). Число структурных единиц, содержащихся в веществе количеством один моль равно 6,02·10 23 и называется числом Авогадро (N А ).

Например, один моль меди содержит 6,02·10 23 атомов меди (Cu), а один моль водорода (H 2) – 6,02·10 23 молекул водорода.

Молярной массой (M) называется масса вещества, взятого в количестве 1 моль.

Молярная масса обозначается буквой М и имеет размерность [г/моль]. В физике пользуются размерностью [кг/кмоль].

В общем случае численное значение молярной массы вещества численно совпадает со значением его относительной молекулярной (относительной атомной) массы.

Например, относительная молекулярная масса воды равна:

Мr(Н 2 О) = 2Аr (Н) + Аr (O) = 2∙1 + 16 = 18 а.е.м.

Молярная масса воды имеет ту же величину, но выражена в г/моль:

М (Н 2 О) = 18 г/моль.

Таким образом, моль воды, содержащий 6,02·10 23 молекул воды (соответственно 2·6,02·10 23 атомов водорода и 6,02·10 23 атомов кислорода), имеет массу 18 граммов. В воде, количеством вещества 1 моль, содержится 2 моль атомов водорода и один моль атомов кислорода.

1.3.4. Связь между массой вещества и его количеством

Зная массу вещества и его химическую формулу, а значит и значение его молярной массы, можно определить количество вещества и, наоборот, зная количество вещества, можно определить его массу. Для подобных расчетов следует пользоваться формулами:

где ν – количество вещества, [моль]; m – масса вещества, [г] или [кг]; М – молярная масса вещества, [г/моль] или [кг/кмоль].

Например, для нахождения массы сульфата натрия (Na 2 SO 4) количеством 5 моль найдем:

1) значение относительной молекулярной массы Na 2 SO 4 , представляющую собой сумму округленных значений относительных атомных масс:

Мr(Na 2 SO 4) = 2Аr(Na) + Аr(S) + 4Аr(O) = 142,

2) численно равное ей значение молярной массы вещества:

М(Na 2 SO 4) = 142 г/моль,

3) и, наконец, массу 5 моль сульфата натрия:

m = ν · M = 5 моль · 142 г/моль = 710 г.

Ответ: 710.

1.3.5. Связь между объемом вещества и его количеством

При нормальных условиях (н.у.), т.е. при давлении р , равном 101325 Па (760 мм. рт. ст.), и температуре Т, равной 273,15 К (0 С), один моль различных газов и паров занимает один и тот же объем, равный 22,4 л.

Объем, занимаемый 1 моль газа или пара при н.у., называется молярным объемом газа и имеет размерность литр на моль.

V мол = 22,4 л/моль.

Зная количество газообразного вещества (ν) и значение молярного объема (V мол) можно рассчитать его объем (V) при нормальных условиях:

V = ν · V мол,

где ν – количество вещества [моль]; V – объем газообразного вещества [л]; V мол = 22,4 л/моль.

И, наоборот, зная объем (V ) газообразного вещества при нормальных условиях, можно рассчитать его количество (ν):

Молярный объем газа равен отношению объема газа к количеству вещества этого газа, т.е.


V m = V(X) / n(X),


где V m - молярный объем газа - постоянная величина для любого газа при данных условиях;


V(X) – объем газа Х;


n(X) – количество вещества газа Х.


Молярный объем газов при нормальных условиях (нормальном давлении р н = 101 325 Па ≈ 101,3 кПа и температуре Т н =273,15 К ≈ 273 К) составляет V m = 22,4 л/моль.

Законы идеальных газов

В расчетах, связанных с газами, часто приходится переходить от данных условий к нормальным или наоборот. При этом удобно пользоваться формулой, следующей из объединенного газового закона Бойля-Мариотта и Гей-Люссака:


pV / Т = p н V н / Т н


Где p -давление; V - объем; Т- температура вшкале Кельвина; индекс «н» указывает на нормальные условия.

Объемная доля

Состав газовых смесей часто выражают при помощи объемной доли - отношения объема данного компонента к общему объему системы, т.е.


φ(Х) = V(X) / V


где φ(Х) - объемная доля компонента Х;


V(X) - объем компонента Х;


V - объем системы.


Объемная доля - безразмерная величина, её выражают в долях от единицы или в процентах.


Пример 1. Какой объем займет при температуре 20°С и давлении 250 кПа аммиак массой 51 г?







1. Определяем количество вещества аммиака:


n(NH 3) = m(NH 3) / М(NH 3) = 51 / 17 = 3 моль.


2. Объем аммиака при нормальных условиях составляет:


V(NH 3) = V m · n(NH 3) = 22,4 · 3 = 67,2 л.


3. Используя формулу (3), приводим объем аммиака к данным условиям (температура Т = (273 + 20) К = 293 К):


V(NH 3) = p н V н (NH 3) / pТ н = 101,3 · 293 · 67,2 / 250 · 273 = 29,2 л.


Ответ: V(NH 3) = 29,2 л.






Пример 2. Определите объем, который займет при нормальных условиях газовая смесь, содержащая водород, массой 1,4 г и азот, массой 5,6 г.







1. Находим количества вещества водорода и азота:


n(N 2) = m(N 2) / М(N 2) = 5,6 / 28 = 0,2 моль


n(H 2) = m(H 2) / М(H 2) = 1,4 / 2 = 0,7 моль


2. Так как при нормальных условиях эти газы не взаимодействуют между собой, то объем газовой смеси будет равен сумме объемов газов, т.е.


V(смеси) = V(N 2) + V(H 2) = V m · n(N 2) + V m · n(H2) = 22,4 · 0,2 + 22,4 · 0,7 = 20,16 л.


Ответ: V(смеси) = 20,16 л.





Закон объемных отношений

Как решить задачу с использованием «Закона объемных отношений»?


Закон объемных отношений: объемы газов, участвующих в реакции, относятся друг к другу как небольшие целые числа, равные коэффициентам в уравнении реакции.


Коэффициенты в уравнениях реакций показывают числа объемов реагирующих и образовавшихся газообразных веществ.


Пример. Вычислите объем воздуха, необходимый для сгорания 112 л ацетилена.


1. Составляем уравнение реакции:

2. На основании закона объемных отношений вычисляем объем кислорода:


112 / 2 = Х / 5, откуда Х = 112 · 5 / 2 = 280л


3. Определяем объм воздуха:


V(возд) = V(O 2) / φ(O 2)


V(возд) = 280 / 0,2 = 1400 л.

Названия кислот образуются от русского названия центрального атома кислоты с добавлением суффиксов и окончаний. Если степень окисления центрального атома кислоты соответствует номеру группы Периодической системы, то название образуется с помощью простейшего прилагательного от названия элемента: H 2 SO 4 – серная кислота, HMnO 4 – марганцовая кислота. Если кислотообразующие элементы имеют две степени окисления, то промежуточная степень окисления обозначается суффиксом –ист-: H 2 SO 3 – сернистая кислота, HNO 2 – азотистая кислота. Для названий кислот галогенов, имеющих много степеней окисления, применяются различные суффиксы: типичные примеры – HClO 4 – хлорн ая кислота, HClO 3 – хлорноват ая кислота, HClO 2 – хлорист ая кислота, HClO – хлорноватист ая кислота (бескислородная кислота HCl называется хлороводородной кислотой – обычно соляной кислотой). Кислоты могут различаться числом молекул воды, гидратирующей оксид. Кислоты, содержащие наибольшее число атомов водорода, называются ортокислотами: H 4 SiO 4 – ортокремниевая кислота, H 3 PO 4 – ортофосфорная кислота. Кислоты, содержащие 1 или 2 атома водорода, называются метакислотами: H 2 SiO 3 – метакремниевая кислота, HPO 3 – метафосфорная кислота. Кислоты, содержащие два центральных атома, называются ди кислотами: H 2 S 2 O 7 – дисерная кислота, H 4 P 2 O 7 – дифосфорная кислота.

Названия комплексных соединенийобразуются так же, как названия солей , но комплексному катиону или аниону дается систематическое название, то есть оно читается справа налево: K 3 – гексафтороферрат(III) калия, SO 4 – сульфат тетраамминмеди(II).

Названия оксидов образуются с помощью слова «оксид» и родительного падежа русского названия центрального атома оксида с указанием, в случае необходимости, степени окисления элемента:Al 2 O 3 – оксид алюминия,Fe 2 O 3 – оксид железа(III).

Названия оснований образуются с помощью слова «гидроксид» и родительного падежа русского названия центрального атома гидроксида с указанием, в случае необходимости, степени окисления элемента: Al(OH) 3 – гидроксид алюминия, Fe(OH) 3 – гидроксид железа(III).

Названия соединений с водородом образуются в зависимости от кислотно-основных свойств этих соединений. Для газообразных кислотообразующих соединений с водородом применяются названия:H 2 S– сульфан (сероводород),H 2 Se– селан (селеноводород),HI– иодоводород; их растворы в воде называются соответственно сероводородной, селеноводородной и иодоводородной кислотами. Для некоторых соединений с водородом применяются специальные названия:NH 3 – аммиак,N 2 H 4 – гидразин,PH 3 – фосфин. Соединения с водородом, имеющим степень окисления –1, называются гидридами:NaH– гидрид натрия,CaH 2 –гидрид кальция.

Названия солей образуются от латинского названия центрального атома кислотного остатка с добавлением префиксов и суффиксов. Названия бинарных (двухэлементных) солей образуются с помощью суффикса –ид : NaCl – хлорид натрия, Na 2 S – сульфид натрия. Если центральный атом кислородсодержащего кислотного остатка имеет две положительные степени окисления, то высшая степень окисления обозначается суффиксом –ат : Na 2 SO 4 – сульфат натрия, KNO 3 – нитрат калия, а низшая степень окисления – суффиксом –ит : Na 2 SO 3 – сульфит натрия, KNO 2 – нитрит калия. Для названия кислородсодержащих солей галогенов пользуются префиксами и суффиксами: KClO 4 – пер хлорат калия, Mg(ClO 3) 2 – хлорат магния, KClO 2 – хлорит калия, KClO – гипо хлорит калия.

Насыщаемость ковалентн ых связ ей – проявляется в том, что в соединениях s- и p-элементов нет неспаренных электронов, то есть все неспаренные электроны атомов образуют связывающие электронные пары (исключения составляют NO, NO 2 , ClO 2 и ClO 3).

Неподеленные электронные пары (НЭП) –электроны, которые занимают атомные орбитали парами. Наличие НЭП обусловливает способность анионов или молекул, образовывать донорно-акцепторные связи в качестве доноров электронных пар.

Неспаренные электроны– электроны атома, содержащиеся по одному в орбитали. Для s- и p-элементов число неспаренных электронов определяет, сколько связывающих электронных пар может образовать данный атом с другими атомами по обменному механизму. В методе валентных связей исходят из того, что число неспаренных электронов может быть увеличено за счет неподеленных электронных пар, если в пределах валентного электронного уровня есть вакантные орбитали. В большинстве соединенийs- иp-элементов неспаренных электронов нет, так как все неспаренные электроны атомов образуют связи. Однако молекулы с неспаренными электронами существуют, например, NO, NO 2 , они обладают повышенной реакционной способностью и имеют тенденцию образовывать димеры типа N 2 O 4 за счет неспаренных электронов.

Нормальная концентрация – это число молей эквивалентов в 1 л раствора.

Нормальные условия - температура 273K (0 o C), давление 101,3 кПа (1 атм).

Обменный и донорно-акцепторный механизмы образования химической связи . Образование ковалентных связей между атомами может происходить двояко. Если образование связывающей электронной пары происходит за счет неспаренных электронов обоих связанных атомов, то такой способ образования связывающей электронной пары носит название обменного механизма – атомы обмениваются электронами, притом связывающие электроны принадлежат обоим связанным атомам. Если же связывающая электронная пара образуется за счет неподеленной электронной пары одного атома и вакантной орбитали другого атома, то такое образование связывающей электронной пары является донорно-акцепторным механизмом (см. метод валентных связей).

Обратимые ионные реакции – это такие реакции, в которых образуются продукты, способные образовывать исходные вещества (если иметь ввиду написанное уравнение, то про обратимые реакции можно сказать, что они могут протекать в ту и другую стороны с образованием слабых электролитов или малорастворимых соединений). Обратимые ионные реакции часто характеризуются неполнотой превращения; так как в течение обратимой ионной реакции образуются молекулы или ионы, которые вызывают смещение в сторону исходных продуктов реакции, то есть как бы «тормозят» реакцию. Обратимые ионные реакции описываются с помощью знака ⇄, а необратимые – знака →. Примером обратимой ионной реакции может служить реакция H 2 S + Fe 2+ ⇄ FeS + 2H + , а примером необратимой – S 2- + Fe 2+ → FeS.

Окислители вещества, у которых при окислительно-восстановительных реакциях степени окисления некоторых элементов уменьшаются.

Окислительно-восстановительная двойственность – способность веществ выступать в окислительно-восстановительных реакциях в качестве окислителя или восстановителя в зависимости от партнера (например, H 2 O 2 , NaNO 2).

Окислительно-восстановительные реакции (ОВР) – это химические реакции, в течение которых изменяются степени окисления элементов реагирующих веществ.

Окислительно-восстановительный потенциал – величина, характеризующая окислительно-восстановительную способность (силу) и окислителя, и восстановителя, составляющих соответствующую полуреакцию. Так, окислительно-восстановительный потенциал пары Cl 2 /Cl - , равный 1,36 В, характеризует молекулярный хлор как окислитель и хлорид-ион как восстановитель.

Оксиды – соединения элементов с кислородом, в которых кислород имеет степень окисления, равную –2.

Ориентационные взаимодействия – межмолекулярные взаимодействия полярных молекул.

Осмос – явление переноса молекул растворителя на полупроницаемой (проницаемой только для растворителя) мембране в сторону меньшей концентрации растворителя.

Осмотическое давление – физико-химическое свойство растворов, обусловленное способностью мембран пропускать только молекулы растворителя. Осмотическое давление со стороны менее концентрированного раствора уравнивает скорости проникновения молекул растворителя в обе стороны мембраны. Осмотическое давление раствора равно давлению газа, в котором концентрация молекул такая же, как концентрация частиц в растворе.

Основания по Аррениусу – вещества, которые в процессе электролитической диссоциации отщепляют гидроксид-ионы.

Основания по Бренстеду – соединения (молекулы или ионы типа S 2- , HS -), которые могут присоединять ионы водорода.

Основания по Льюису (льюисовы основания ) соединения (молекулы или ионы), с неподеленными электронными парами, способными образовывать донорно-акцепторные связи. Самым обычным льюисовым основанием являются молекулы воды, которые обладают сильными донорными свойствами.

Цель урока: сформировать понятие о молярном, миллимолярном и киломолярном объемах газов и единицах их измерения.

Задачи урока:

  • Обучающие – закрепить ранее изученные формулы и найти связь между объемом и массой, количеством вещества и числом молекул, закрепить и систематизировать знания учащихся.
  • Развивающие – развивать умения и навыки решать задачи, способности к логическому мышлению, расширять кругозор учащихся, их творческие способности, умения работать с дополнительной литературой, долговременную память, интерес к предмету.
  • Воспитательные – воспитывать личности с высоким уровнем культуры, формировать потребность в познавательной деятельности.

Тип урока: Комбинированный урок.

Оборудование и реактивы: Таблица «Молярный объем газов», портрет Авогадро, мензурка, вода, мерные стаканы с серой, оксидом кальция, глюкозы количеством вещества 1 моль.

План урока :

  1. Организационный момент (1 мин.)
  2. Проверка знаний в виде фронтального опроса (10 мин.)
  3. Заполнение таблицы (5 мин.)
  4. Объяснение нового материала (10 мин.)
  5. Закрепление (10 мин.)
  6. Подведение итогов (3 мин.)
  7. Домашнее задание (1 мин.)

Ход урока

1. Организационный момент.

2. Фронтальная беседа по вопросам.

Как называется масса 1 моля вещества?

Как связать молярную массу и количество вещества?

Чему равно число Авогадро?

Как связано число Авогадро и количество вещества?

А как связать массу и число молекул вещества?

3. А теперь заполните таблицу, решив задачи – это групповая работа.

Формула, вещества Масса, г Молярная масса, г/моль Количество вещества, моль Число молекул Число Авогадро, молекул/моль
ZnO ? 81 г/моль ? моль 18 10 23 молекул 6 10 23
MgS 5,6г 56 г/моль ? моль ? 6 10 23
BaCl 2 ? ? г/моль 0,5 моль 3 10 23 молекул 6 10 23

4. Изучение нового материала.

«...Мы хотим не только знать, как устроена природа (и как происходят природные явления), но и по возможности достичь цели, может быть, утопической и дерзкой на вид, – узнать, почему природа является именно такой, а не другой. В этом ученые находят наивысшее удовлетворение.»
Альберт Эйнштейн

Итак, наша цель найти наивысшее удовлетворение, как настоящие ученые.

А как называется объем 1 моля вещества?

От чего зависит молярный объем?

Чему будет равен молярный объем воды, если ее M r = 18, а ρ = 1 г/мл?

(Конечно 18 мл).

Для определения объема вы пользовались формулой известной из физики ρ = m / V (г/мл, г/см 3 , кг/м 3)

Отмерим этот объем мерной посудой. Отмерим молярные объемы спирта, серы, железа, сахара. Они разные, т.к. плотность разная, (таблица различных плотностей).

А как обстоит дело у газов? Оказывается, 1 моль любого газа при н.у. (0°С и 760 мм.рт.ст.) занимает один и тот же объем молярный 22,4 л/моль (показывается на таблице). А как будет называться объем 1 киломоля? Киломолярным. Он равен 22,4 м 3 /кмоль. Миллимолярный объем 22,4 мл/моль.

Откуда взялось это число?

Оно вытекает из закона Авогадро. Следствие из закона Авогадро: 1 моль любого газа при н.у. занимает объем 22,4 л/моль.

Немного о жизни итальянского ученого мы сейчас услышим. (сообщение о жизни Авогадро)

А теперь посмотрим зависимость величин от разных показателей:

Формула вещества Агрегатное состояние (при н.у.) Масса, г Плотность, г/мл Объем порций в 1 моль, л Количество вещества, моль Зависимость между объемом и количеством вещества
NaCl Твердое 58,5 2160 0,027 1 0,027
H 2 O Жидкое 18 1000 0,018 1 0,18
O 2 Газ 32 1,43 22,4 1 22,4
H 2 Газ 2 0,09 22,4 1 22,4
CO 2 Газ 44 1,96 22,4 1 22,4
SO 2 газ 64 2,86 22,4 1 22,4

Из сравнения полученных данных сделайте вывод (зависимость между объемом и количеством вещества для всех газообразных веществ (при н.у.) выражается одинаковой величиной, которая называется молярным объемом.)

Обозначается V m и измеряется л/моль и т.д. Выведем формулу для нахождения молярного объема

V m = V/ v , отсюда можно найти количество вещества и объем газа. А теперь вспомним ранее изученные формулы, можно ли их объединить? Можно получить универсальные формулы для расчетов.

m/M = V/V m ;

V/V m = N/Na

5. А теперь закрепим полученные знания с помощью устного счета, чтобы знания через умения стали применятся автоматически, то есть превратились в навыки.

За правильный ответ вы будите получать балл, по количеству баллов получите оценку.

  1. Назовите формулу водорода?
  2. Какова его относительная молекулярная масса?
  3. Какова его молярная масса?
  4. Сколько молекул водорода будет в каждом случае?
  5. Какой объем займут при н.у. 3 г H 2 ?
  6. Сколько будут весить 12 10 23 молекул водорода?
  7. Какой объем займут эти молекулы в каждом случае?

А теперь решим задачи по группам.

Задача №1

Образец: Какой объем занимает 0,2 моль N 2 при н.у.?

  1. Какой объем занимают 5 моль O 2 при н.у.?
  2. Какой объем занимают 2,5 моль H 2 при н.у.?

Задача №2

Образец: Какое количество вещества содержит водород объемом 33,6 л при н.у.?

Задачи для самостоятельного решения

Решите задачи по приведённому образцу:

  1. Какое количество вещества содержит кислород объемом 0,224 л при н.у.?
  2. Какое количество вещества содержит углекислый газ объемом 4,48 л при н.у.?

Задача №3

Образец: Какой объем займут 56 г. газа СО при н.у.?

Задачи для самостоятельного решения

Решите задачи по приведённому образцу:

  1. Какой объем займут 8 г. газа O 2 при н.у.?
  2. Какой объем займут 64 г. газа SO 2 при н.у.?

Задача №4

Образец: В каком объеме содержится 3·10 23 молекул водорода H 2 при н.у.?

Задачи для самостоятельного решения

Решите задачи по приведённому образцу:

  1. В каком объеме содержится 12,04 ·10 23 молекул водорода СO 2 при н.у.?
  2. В каком объеме содержится 3,01·10 23 молекул водорода O 2 при н.у.?

Понятие относительной плотности газов следует дать на основании их знаний о плотности тела: D = ρ 1 /ρ 2 , где ρ 1 – плотность первого газа, ρ 2 – плотность второго газа. Вы знаете формулу ρ = m/V. Заменив в этой формуле m на М, а V на V m , получим ρ = М/V m . Тогда относительную плотность можно выразить, используя правую часть последней формулы:

D = ρ 1 /ρ 2 = М 1 /М 2 .

Вывод: относительная плотность газов – число, показывающее, во сколько раз молярная масса одного газа больше молярной массы другого газа.

Например, определите относительную плотность кислорода по воздуху, по водороду.

6. Подведение итогов.

Решите задачи для закрепления:

Найдите массу (н.у.): а) 6 л. О 3 ; б) 14 л. газа H 2 S?

Какой объём водорода при н.у. образуется при взаимодействии 0,23 г натрия с водой?

Какова молярная масса газа, если 1 л. его имеет массу 3,17 г.? (Подсказка! m = ρ·V)

Прежде чем решать задачи, следует занть формулы и правила того, как найти объем газа. Следует вспомнить закон Авогадро. А сам объем газа можно вычислить при помощи нескольких формул, выбрав из них подходящую. При подборе необходимой формулы, большое значение имеют условия среды, в частности температура и давление.

Закон Авогадро

В нем говорится, что при одинаковом давлении и одинаковой температуре, в одних и тех же объемах разных газов, будет содержаться одинаковое число молекул. Количество молекул газа, содержащихся в одном моле, это есть число Авогадро. Из этого закона следует, что: 1 Кмоль (киломоль) идеального газа, причем любого, при одинаковом давлении и температуре (760 мм рт.ст. и t = 0*С) всегда занимает один объем = 22,4136 м3.

Как определить объем газа

  • Формулу V=n*Vm чаще всего можно встретить в задачах. Здесь объем газа в литрах - V, Vm – объем газа молярный (л/моль), который при нормальных условиях = 22,4 л/моль, а n – количество вещества в молях. Когда в условиях нет количества вещества, но при этом есть масса вещества, тогда поступаем таким образом: n=m/M. Здесь М – г/моль (молярная масса вещества), а масса вещества в граммах - m. В таблице Менделеева она написана под каждым элементом, как его атомная масса. Сложим все массы и получим искомую.
  • Итак, как рассчитать объем газа. Вот задача: в соляной кислоте растворить 10 г алюминия. Вопрос: сколько водорода может выделиться при н. у.? Уравнение реакции выглядит так: 2Al+6HCl(изб.)=2AlCl3+3H2. В самом начале находим алюминий (количество), вступивший в реакцию по формуле: n(Al)=m(Al)/M(Al). Массу алюминия (молярную) возьмем из таблицы Менделеева M(Al)=27г/моль. Подставим: n(Al)=10/27=0,37моль. Из химического уравнения видно, 3 моли водорода образовались при растворении 2-х молей алюминия. Следует рассчитать, а сколько же водорода выделится из 0,4 моли алюминия: n(H2)=3*0,37/2=0,56моль. Подставим данные в формулу и найдем объем этого газа. V=n*Vm=0,56*22,4=12,54л.