Дисперсные системы.

Дисперсные системы широко распространены в природе и с давних времен используются человеком в его жизнедеятельности. Практически любой живой организм либо представляет собой дисперсную систему, либо содержит их в различных формах.

Пример: свободнодисперсные системы (нет сплошных жестких структур - золи): кровь, лимфа, желудочный и кишечный соки, спинномозговая жидкость и т.д.

связнодисперсные системы (есть жесткие пространственные структуры - гели): протоплазма, мембраны клеток, мышечное волокно, хрусталик глаза и т.д.

Дисперсные системы активно применяют в медицине, это в первую очередь коллоидные растворы, аэрозоли, кремы, мази. Биохимические процессы в организме протекают в дисперсных системах. Усвоение пищи связано с переходом питательных веществ в растворенное состояние. Биожидкости (дисперсные системы) участвуют в транспорте питательных веществ (жиров, аминокислот, кислорода), лекарственных препаратов к органам и тканям, а также в выведении из организма метаболитов (мочевины, билирубина, углекислого газа).

Знание закономерностей физико-химических процессов в дисперсных системах важно будущим врачам как для изучения медико-биологических и клинических дисциплин, так и для более глубокого понимания процессов, протекающих в организме, и сознательного изменения их в желаемом направлении.

Дисперсные системы – это многокомпонентные системы, в которых одни вещества в виде мелких частиц распределены в другом веществе. Вещество, которое распределяется, называется дисперсной фазой. Вещество, в котором распределяется дисперсная фаза, называется дисперсионной средой.

Пример: водный раствор глюкозы

молекулы глюкозы – дисперсная фаза

вода – дисперсионная среда

Дисперсность – величина, характеризующая размер взвешенных частиц в дисперсных системах. Она обратна диаметру частиц дисперсной фазы. Чем меньше размер частиц, тем больше дисперсность.

Классификация дисперсных систем.



Дисперсные системы классифицируют по пяти признакам.

1. По степени дисперсности:

· грубодисперсные

Д = 10 4 – 10 6 м –1 , характеризуются неустойчивостью, непрозрачностью.

Пример: суспензии, эмульсии, пены, взвеси.

· коллоидно-дисперсные

Д = 10 7 – 10 9 м –1 , могут быть прозрачными и мутными, обладать устойчивостью и быть неустойчивыми.

Пример: коллоидные растворы, растворы высокомолекулярных соединений.

· молекулярно-дисперсные и ионно-дисперсные

Д = 10 10 – 10 11 м –1 , характеризуются прозрачностью и устойчивостью.

Пример: растворы низкомолекулярных соединений.

2. По наличию физической поверхности раздела между дисперсной фазой и дисперсионной средой:

· гомогенные (однофазные системы, граница раздела отсутствует.

Пример: растворы низкомолекулярных и высокомолекулярных соединений.

· гетерогенные

существует граница раздела между дисперсной фазой и дисперсионной средой.

Пример: коллоидные растворы и грубодисперсные системы.

3. По характеру взаимодействия между дисперсной фазой и дисперсионной средой:

· лиофильные

между дисперсной фазой и дисперсионной средой существует сродство.

Пример: все гомогенные системы.

· лиофобные

между дисперсной фазой и дисперсионной средой слабое взаимодействие или отсутствует.

Пример: все гетерогенные системы.

4. По агрегатному состоянию дисперсной фазы и дисперсионной среды:

дисп.фаза дисп.среда газообразная твердая жидкая
газообразная смесь газов (воздух) табачный дым пыль мучная, космическая аэрозоли туман пар облака
жидкая растворенный в крови CO 2 , O 2 , N 2 , пены минеральные воды фруктовые газированные напитки коллоидные растворы суспензии растворы ВМС растворы НМС эмульсии: молоко масло сливочное маргарин кремы мази нефть
твердая твердые пены (пенопласт, активированный уголь) ионообменные смолы молекулярные сита сплавы металла цветные стекла, хрусталь драгоценные камни (рубин, аметист) суппозитории (лечебные свечи) кристаллогидраты минералы с жидкими включениями (жемчуг, опал) влажные почвы

5. По природе дисперсионной среды:

Истинные растворы.

Истинный раствор – это гомогенная лиофильная дисперсная система с размерами частиц 10 –10 – 10 –11 м.

Истинные растворы – это однофазные дисперсные системы, они характеризуются большой прочностью связи между дисперсной фазой и дисперсионной средой. Истинный раствор сохраняет гомогенность неопределенно долгое время. Истинные растворы всегда прозрачны. Частицы истинного раствора не видны даже в электронный микроскоп. Истинные растворы хорошо диффундируют.

Компонент, агрегатное состояние которого не изменяется при образовании раствора, называют растворителем (дисперсионная среда), а другой компонент – растворенным веществом (дисперсная фаза).

При одинаковом агрегатном состоянии компонентов растворителем считается компонент, количество которого в растворе преобладает.

В растворах электролитов вне зависимости от соотношения компонентов электролиты рассматриваются как растворенные вещества.

Истинные растворы подразделяются:

· по типу растворителя: водные и неводные

· по типу растворенного вещества: растворы солей, кислот, щелочей, газов и т.д.

· по отношению к электрическому току: электролиты и неэлектролиты

· по концентрации: концентрированные и разбавленные

· по степени достижения предела растворимости: насыщенные и ненасыщенные

· с термодинамической точки зрения: идеальные и реальные

· по агрегатному состоянию: газообразные, жидкие, твердые

Истинные растворы бывают:

· ионно-дисперсные (дисперсная фаза – гидратированные ионы): водный раствор NaCl

· молекулярно-дисперсные (дисперсная фаза – молекулы): водный раствор глюкозы

Ионы каждый в отдельности или совместно выполняют определённые функции в организме. Решающая роль в переносе воды в организме принадлежит ионам Na + и Cl – , т.е участвуют в водно-солевом обмене. Ионы электролитов участвуют в процессах поддержания постоянства осмотического давления, установления кислотно-щелочного равновесия, в процессах передачи нервных импульсов, в процессах активации ферментов.

С позиции живых систем наибольший интерес представляют растворы, в которых растворителем является вода.

В ней растворяется огромное число веществ. Она не только растворитель, который обеспечивает молекулярное рассеяние веществ по всему организму. Она также является участником многих химических и биохимических процессов в организме. Например, гидролиза, гидратации, набухания, транспорта питательных и лекарственных веществ, газов, антител и т.п.

В организме происходит непрерывный обмен воды и растворённых в ней веществ. Вода составляет основную массу любого живого существа. Её содержание в теле человека меняется с возрастом: у эмбриона человека – 97%, у новорождённого – 77%, у взрослых мужчин – 61%, у взрослых женщин – 54%, у стариков старше 81 года – 49,8%. Большая часть воды в организме находится внутри клеток (70%), около 23% – межклеточной воды, а остальная (7%) – находится внутри кровеносных сосудов и в составе плазмы крови.

Всего в организме 42 л воды. В сутки поступает в организм и выводится из него 1,5 – 3 л воды. Это нормальный водный баланс организма.

Главный путь выведения воды из организма – почки. Потеря 10 – 15% воды опасна, а 20 – 25% смертельна для организма.

Важнейшей характеристикой раствора является его концентрация.

Способы выражения концентрации растворов:

1. Массовая доля w(х) – величина, равная отношению массы растворённого вещества m(x) к массе раствора m(p-p)

w (x) = × 100%

2. Молярная концентрация раствора с (х) – величина, равная отношению количества вещества n(х), содержащегося в растворе, к объёму этого раствора V(р-р).

с (х) = [моль/л], где n(х) = [моль]

Миллимолярный раствор – раствор с молярной концентрацией равной 0,001 моль/л

Сантимолярный раствор – раствор с молярной концентрацией равной 0,01 моль/л

Децимолярный раствор – раствор с молярной концентрацией равной 0,1 моль/л

3. Молярная концентрация эквивалента с ( x) – величина, равная отношению количества вещества эквивалента n ( x) в растворе к объёму этого раствора.

c ( x) = [моль/л], где n ( x) = [моль], а М( x) = × М(x)

Эквивалент – это реальная или условная частица вещества х , которая в данной кислотно-основной реакции эквивалентна одному иону водорода или в данной ОВР – одному электрону.

Число эквивалентности z и фактор эквивалентности f = . Фактор эквивалентности показывает, какая доля реальной частицы вещества х эквивалентна одному иону водорода или одному электрону. Число эквивалентности z равно для:

а) кислот – основности кислоты H 2 SO 4 z = 2.

б) оснований – кислотности основания Aℓ(OH) 3 z = 3.

в) солей – произведению степени окисления (с.о.) металла на число его атомов в молекуле Fe 2 (SO 4) 3 z = 2 × 3 = 6.

г) окислителей – числу присоединенных электронов

Mn +7 + 5ē → Mn +2 z = 5

д) восстановителей – числу отданных электронов

Fe +2 – 1ē → Fe +3 z = 1

4. Моляльная концентрация b(x) – величина, равная отношению количества вещества к массе растворителя (кг)

b(x) = = [моль/кг]

5. Молярная доля c(x i) равна отношению количества вещества данного компонента к суммарному количеству всех компонентов раствора

Формулы взаимосвязи концентраций:

с ( x) = c (x) × z

У растворов имеется ряд свойств, которые не зависят от природы растворенного вещества, а зависят только от его концентрации. Наиболее важным является осмос.

Благодаря осмосу через мембраны клеток органов и тканей осуществляется сложный процесс обмена веществ организма с внешней средой.

Диффузия – процесс самопроизвольного выравнивания концентрации в единице объема.

Осмос – односторонняя диффузия молекул растворителя через полупроницаемую мембрану из растворителя в раствор или из раствора с меньшей концентрацией в раствор с большей концентрацией.

раствор растворитель

Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса - обратной диффузии растворителя. Обратный осмос имеет место при фильтрации плазмы крови в артериальной части капилляра и в почечных клубочках.

Осмотическое давление – давление, которое нужно приложить к раствору, чтобы осмос прекратился.

Уравнение Вант-Гоффа: Р осм = c RT×10 3

Осмотическое давление крови: 780 – 820 кПа

Все растворы, с точки зрения осмотических явлений, можно разделить на 3 группы:

· Изотонические растворы – растворы, имеющие одинаковые осмотические давления и осмолярные концентрации. Примеры: желчь, раствор NaCl (w=0,9%, с=0,15 моль/л), раствор глюкозы (w=7%, с=0,3 моль/л)

Осмолярная концентрация (осмолярность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 литре раствора. с осм, осмоль/л

Осмоляльная концентрация (осмоляльность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 кг растворителя. b осм, осмоль/кг

Для разбавленных растворов осмолярная концентрация совпадает с осмоляльной концентрацией. с осм ≈ b осм

· Гипертонический раствор – раствор с более высокой концентрацией растворенных веществ, следовательно, с более высоким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран вытягивать из него воду. Примеры: кишечный сок, моча.

· Гипотонический раствор – раствор с более низкой концентрацией растворенных веществ, следовательно, с более низким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран терять воду. Примеры: слюна, пот.

Животные и растительные клетки отделены от окружающей среды мембраной. При помещении клетки в различные по осмолярным концентрациям или давлениям растворы будут наблюдаться следующие явления:

· плазмолиз – уменьшение клетки в объеме. При этом клетку помещают в гипертонический раствор. Разность осмотических давлений вызывает перемещение растворителя из клетки в гипертонический раствор.

· лизис – увеличение клетки в объеме. При этом клетку помещают в гипотонический раствор. Разность осмотических давлений вызывает перемещение растворителя в клетку. В случае разрыва эритроцитарных мембран и перехода гемоглобина в плазму явление называется гемолизом.

· изоосмия – объем клетки не изменяется. При этом клетку помещают в изотонический раствор.

С помощью осмотических явлений поддерживается водно-солевой обмен в организме человека. Осмос – это основа механизма работы почек. Изотонический (физиологический) раствор NaCl (0,9%) используется при больших кровопотерях. Гипертонический раствор NaCl (10%) используют при накладывании марлевых повязок на гнойные раны.

Онкотическое давление – это часть осмотического давления, создаваемого белками.

В плазме крови человека составляет лишь около 0,5 % осмотического давления (0,03-0,04 атм или 2,5 – 4,0 кПа). Тем не менее, онкотическое давление играет важнейшую роль в образовании межклеточной жидкости, первичной мочи и др. Стенка капилляров свободно проницаема для воды и низкомолекулярных веществ, но не для белков. Скорость фильтрации жидкости через стенку капилляра определяется разницей между онкотическим давлением белков плазмы и гидростатическим давлением крови, создаваемым работой сердца. На артериальном конце капилляра солевой раствор вместе с питательными веществами переходит в межклеточное пространство. На венозном конце капилляра процесс идёт в противоположном направлении, поскольку венозное давление ниже онкотического давления. В результате в кровь переходят вещества, отдаваемые клетками. При заболеваниях, сопровождающихся уменьшением концентрации в крови белков (особенно альбуминов), онкотическое давление снижается, и это может явиться одной из причин накопления жидкости в межклеточном пространстве, в результате чего развиваются отёки.


Дисперсионные системы можно разделить по размеру частиц дисперсионной фазы. Если размер частиц составляет меньше одного нм – это молекулярно - ионные системы, от одного до ста нм - коллоидные, и более ста нм - грубодисперсные. Группу молекулярно дисперсных систем представляют растворы. Это однородные системы, которые состоят из двух или более веществ и являются однофазными. К ним относятся газ, твердое вещество или растворы. В свою очередь эти системы можно разделить на подгруппы:
- Молекулярные. Когда органические вещества, такие как глюкоза, соединяются с неэлектролитами. Такие растворы назвали истинными для того, чтобы можно было отличать от коллоидных. К ним относятся растворы глюкозы, сахарозы, спиртовые и другие.
- Молекулярно-ионные. В случае взаимодействия между собой слабых электролитов. В эту группу входят кислотные растворы, азотистые, сероводородные и другие.
- Ионные. Соединение сильных электролитов. Яркие представители - это растворы щелочей, солей и некоторых кислот.

Коллоидные системы

Коллоидные системы - это микрогетерогенные системы, в которых размеры коллоидных частиц варьируют от 100 до 1 нм. Они длительное время могут не выпадать в осадок за счет сольватной ионной оболочки и электрического заряда. При распределении в среде коллоидные растворы заполняют равномерно весь объем и делятся на золи и гели, которые в свою очередь представляют собой осадки в виде студня. К ним относятся раствор альбумина, желатина, коллоидные растворы серебра. Холодец, суфле, пудинги - это яркие коллоидной систем, встречающихся в повседневной жизни.

Грубодисперсные системы

Непрозрачные системы или взвеси, в которых мелкие ингредиенты частицы видны невооруженным глазом. В процессе отстаивания дисперсная фаза легко отделяется от дисперсной среды. Они подразделяются на суспензии, эмульсии, аэрозоли. Системы, в которых в жидкой дисперсионной среде размещаются твердое вещество с более крупными частицами, называются суспензиями. К ним относятся водные растворы крахмала и глины. В отличие от суспензий, эмульсии получаются в результате смешивания двух жидкостей, в которых одна капельками распределяется в другой. Примером эмульсии является смесь масла с водой, капельки жира в молоке. Если мелкие твердые или жидкие частицы распределяется в газе - это аэрозоли. По сути аэрозоль - это суспензия в газе. Одним из представителей аэрозоля на основе жидкости является туман - это большое количество мелких водяных капелек, взвешенных в воздухе. Твердотельный аэрозоль – дым или пыль - множественное скопление мелких твердых частиц также взвешенных в воздухе.

ПЛАН:

1. Ведение…………………………………………………………………..2

2. Основные типы дисперсных систем…………………………………...2

3. Образование дисперсных систем………………………………………4

4. Устойчивость дисперсных систем..........................................................5

5. Классификации дисперсных систем…………………………………...8

6. Структурообразование в дисперсных системах и в растворах полимеров……………………………………………………………….16

7. Свойства дисперсных систем и определение размера частиц……….23

8. Список использованной литературы. …………………………………24

ВВЕДЕНИЕ

ДИСПЕРСНЫЕ СИСТЕМЫ - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Д. с. могут иметь и более сложное строение, напр., представлять собой двухфазное образование, каждая из фаз которого, будучи непрерывной, проникает в объем др. фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, некоторые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда "вырождается" до тончайших слоев (пленок), разделяющих частицы дисперсной фазы.

Основные типы дисперсных систем.

По дисперсности, т. е. размеру частиц дисперсной фазы или отношению общей площади межфазной поверхности к объему (или массе) дисперсной фазы (уд. поверхности), Д. с. условно делят на грубодисперсные и тонко(высоко)дисперсные. Последние, по традиции, наз. коллоидно-дисперсными или просто коллоидными системами. В грубодисперсных системах частицы имеют размеры от 1 мкм и выше (уд. поверхность не более 1 м2/г), в коллоидных - от 1 нм до 1 мкм (уд. поверхность достигает сотен м2/г). Дисперсность оценивают по усредненному показателю (среднему размеру частиц, уд. поверхности) или дисперсному составу (см. Дисперсионный анализ). Тонкопористые тела характеризуют пористостью -понятием, аналогичным дисперсности. В свободнодисперсных системах сцепление между частицами дисперсной фазы отсутствует, каждая частица кинетически независима и при достаточно малых размерах участвует в интенсивном броуновском движении. Для структурированных (связнодисперсных) систем характерно наличие неупорядоченной пространств. сетки (каркаса), образованной частицами дисперсной фазы (см. Структурообразование в дисперсных системах). Особую группу составляют высококонцентрированные Д. с., в которых частицы находятся в "стесненных" условиях как, напр., в периодич. коллоидных структурах. Мех. св-ва свободнодисперсных систем определяются гл. обр. св-вами дисперсионной среды, а связнодисперсных систем - также св-вами и числом контактов между частицами дисперсной фазы (см. Реология). По агрегатному состоянию дисперсионной среды и дисперсной фазы выделяют след. осн. виды Д. с.: 1) аэродисперсные (газодисперсные) системы с газовой дисперсионной средой: аэрозоли (дымы, пыли, туманы), порошки, волокнистые материалы типа войлока. 2) Системы с жидкой дисперсионной средой; дисперсная фаза м. б. твердой (грубодисперсные суспензии и пасты, высокодисперсные золи и гели), жидкой (грубодисперсные эмульсии, высокодисперсные микроэмульсии и латексы) или газовой (грубодисперсные газовые эмульсии и пены). 3) Системы с твердой дисперсионной средой: стеклообразные или кристаллич. тела с включениями мелких твердых частиц, капель жидкости или пузырьков газа, напр., рубиновые стекла, минералы типа опала, разнообразные микропористые материалы. Отдельные группы Д. с. составляют мн. металлич. сплавы, горные породы, сложные композиционные и др. многофазные системы. Лиофильные и лиофобные Д. с. с жидкой дисперсионной средой различаются в зависимости от того, насколько близки или различны по своим св-вам дисперсная фаза и дисперсионная среда (см. Лиофильность и лиофобность). В лиофильных Д. с. межмолекулярные взаимод. по обе стороны разделяющей фазы пов-сти различаются незначительно, поэтому уд. своб. поверхностная энергия (для жидкости - поверхностное натяжение) чрезвычайно мала (обычно сотые доли мДж/м2), межфазная граница (поверхностный слой) м. б. размыта и по толщине нередко соизмерима с размером частиц дисперсной фазы. Лиофильные Д. с. термодинамически равновесны, они всегда высокодисперсны, образуются самопроизвольно и при сохранении условий их возникновения могут существовать сколь угодно долго. Типичные лиофильные Д. с. - микроэмульсии, нек-рые полимер-полимерные смеси, мицеллярные системы ПАВ, Д. с. с жидкокристаллич. дисперсными фазами. К лиофильным Д. с. часто относят также набухающие и самопроизвольно диспергирующиеся в водной среде минералы группы монтмориллонита, напр., бентонитовые глины. Следует отметить, что в прошлом "лиофильными коллоидами" наз. р-ры полимеров, т. е. принципиально гомог. системы. Однако в совр. терминологии понятие "коллоид" относится только к микрогетерогенным системам; по отношению к гомогенным (однофазным) системам его не употребляют. В лиофобных Д. с. межмолекулярное взаимод. в дисперсионной среде и в дисперсной фазе существенно различно; уд. своб. поверхностная энергия (поверхностное натяжение) велика - от неск. единиц до неск. сотен (и тысяч) мДж/м2; граница фаз выражена достаточно четко. Лиофобные Д. с. термодинамически неравновесны; большой избыток своб. поверхностной энергии обусловливает протекание в них процессов перехода в более энергетически выгодное состояние. В изотермич. условиях возможна коагуляция -сближение и объединение частиц, сохраняющих первоначальные форму и размеры, в плотные агрегаты, а также укрупнение первичных частиц вследствие коалесценции -слияния капель или пузырьков газа, собирательной рекристаллизации (в случае кристаллич. дисперсной фазы) или изотермич. перегонки (мол. переноса) в-ва дисперсной фазы от мелких частиц к крупным (в случае Д. с. с жидкой дисперсионной средой - последний процесс наз. переконденсацией). Нестабилизованные и, следовательно, неустойчивые лиофобные Д. с. непрерывно изменяют свой дисперсный состав в сторону укрупнения частиц вплоть до полного расслоения на макрофазы. Однако стабилизованные лиофобные Д. с. могут сохранять дисперсность в течение длит. времени.

Образование дисперсных систем.

Возможно двумя путями: диспергационным и конденсационным. Диспергирование макрофаз с образованием лиофильных Д. с. происходит самопроизвольно - для этого достаточно энергии теплового движения. Такой процесс осуществляется при значениях поверхностного натяжения s ниже нек-рого критич. значения sкр = bkТ/d2, где d - размер частиц дисперсной фазы, Т - абс. т-ра, k - постоянная Больцмана, b - безразмерный коэф., принимающий значения примерно 10-30. Образование лиофобных Д. с. путем диспергирования стабильной макрофазы требует значительных энергетич. затрат, определяемых суммарной площадью пов-сти частиц дисперсной фазы. В реальных условиях на образование пов-сти при измельчении твердых тел или при распылении и эмульгировании жидкостей приходится лишь небольшая часть (доли процента) подводимой к системе энергии; остальное расходуется на побочные процессы и рассеивается в окружающем пространстве (см. Диспергирование). Конденсационный путь образования Д. с. связан с зарождением новой фазы (или новых фаз) в пересыщенной метастабильной исходной фазе - будущей дисперсионной среде. Для возникновения высокодисперсной системы необходимо, чтобы число зародышей новой фазы было достаточно большим, а скорость их роста не слишком велика. Кроме того, требуется наличие факторов, ограничивающих возможности чрезмерного разрастания и сцепления частиц дисперсной фазы. Переход первоначально стабильной гомог. системы в метастабилъное состояние может произойти в результате изменения термодинамич. параметров состояния (давления, т-ры, состава). Так образуются, напр., природные и искусственные аэрозоли (туман - из переохлажденных водяных паров, дымы - из парогазовых смесей, выделяемых при неполном сгорании топлива), нек-рые полимерные системы - из р-ров при ухудшении "термодинамич. качества" р-рителя, органозоли металлов путем конденсации паров металла совместно с парами орг. жидкости или при пропускании первых через слой орг. жидкости, коллоидно-дисперсные поликристаллич. тела (металлич. сплавы, нек-рые виды горных пород и искусств. неорг. материалов). Возможно также образование Д. с. в результате хим. р-ции в гомог. среде, если продукт р-ции при данных условиях находится в агрегатном состоянии, отличном от "материнской" фазы, или практически не растворяется в ней. Примерами подобных систем могут служить аэрозоли с твердыми частицами NH4Cl (образуются при взаимод. газообразных NH3 и НСl), аэрозоли с капелъно-жидкими частицами H2SO4 (при взаимод. SO3 и водяного пара). В природе и технол. процессах часто образуются гидрозоли разного состава при гидролизе солей и др. соед., неустойчивых к действию воды. Окислит.-восстановит. р-ции используют для получения золей Аu и Ag, разложение Na2S2O3 разб. серной или соляной к-той - для получения гидрозоля элементарной серы. Хим. или термохим. разложения карбонатов, орг. порофоров (порообразователей, вспенивающих агентов) и др. соед. с выделением газообразных в-в в первоначально жидких средах лежит в основе пром. произ-ва мн. пеноматериалов.

Устойчивость дисперсных систем.

Устойчивость дисперсных систем характеризуется постоянством дисперсности (распределения частиц по размерам) и концентрации дисперсной фазы (числом частиц в единице объема). Наиб. сложна в теоретич. аспекте и важна в практич. отношении проблема устойчивости аэрозолей и жидких лиофобных Д. с. Различают седиментационную устойчивость и устойчивость к коагуляции (агрегативную устойчивость). Седиментационно устойчивы коллоидные системы с газовой и жидкой дисперсионной средой, в к-рых броуновское движение частиц препятствует оседанию; грубодисперсные системы с одинаковой плотностью составляющих их фаз; системы, скоростью седиментации в к-рых можно пренебречь из-за высокой вязкости среды. В агрегативно устойчивых Д. с. непосредств. контакты между частицами не возникают, частицы сохраняют свою индивидуальность. При нарушении агрегативной устойчивости Д. с. частицы, сближаясь в процессе броуновского движения, соединяются необратимо или скорость агрегации становится значительно больше скорости дезагрегации. Между твердыми частицами возникают непосредственные точечные ("атомные") контакты, к-рые затем могут превратиться в фазовые (когезионные) контакты, а соприкосновение капель и пузырьков сопровождается их коалесценцией и быстрым сокращением суммарной площади межфазной пов-сти. Для таких систем потеря агрегативной устойчивости означает также потерю седимeнтационной устойчивости. В агрегативно устойчивых системах дисперсный состав может изменяться вследствие изотермич. перегонки - мол. переноса в-ва дисперсной фазы от мелких частиц к более крупным. Этот процесс обусловлен зависимостью давления насыщенного пара (или концентрации насыщенного р-ра) от кривизны пов-сти раздела фаз (см. Капиллярные явления). Агрегативная устойчивость и длительное существование лиофобных Д. с. с сохранением их св-в обеспечивается стабилизацией. Для высокодисперсных систем с жидкой дисперсионной средой используют введение в-в - стабилизаторов (электролитов, ПАВ, полимеров). В теории устойчивости Дерягина-Ландау-Фервея-Овербека (теории ДЛФО) осн. роль отводится ионно-электростатич. фактору стабилизации. Стабилизация обеспечивается электростатич. отталкиванием диффузных частей двойного электрич. слоя, к-рый образуется при адсорбции ионов электролита на пов-сти частиц. При нек-ром расстоянии между частицами отталкивание диффузных слоев обусловливает наличие минимума на потенц. кривой (дальний, или вторичный, минимум; см. рис.). Хотя этот минимум относительно неглубок, он может препятствовать дальнейшему сближению частиц, притягиваемых силами межмолекулярного взаимодействия. Ближний, или первичный, минимум соответствует прочному сцеплению частиц, при к-ром энергии теплового движения недостаточно для их разъединения. Сближаясь на расстояние, отвечающее этому минимуму, частицы объединяются в агрегаты, образование к-рых ведет к потере системой агрегативной устойчивости. При этом устойчивость системы к коагуляции определяется высотой энергетич. барьера.

Зависимость энергии взаимодействия Е между частицами от расстояния R: 1 и 2 - ближний и дальний минимумы соответственно.

При введении в Д. с. в качестве стабилизатора ПАВ фактором стабилизации м. б. "термодинамич. упругость" пленок среды, разделяющей частицы. Стабилизация обеспечивается тем, что при сближении частиц, напр., капель или газовых пузырей, происходит растяжение и утоньшение разделяющей их прослойки, содержащей ПАВ, и, как следствие, нарушение адсорбц. равновесия. Восстановление этого равновесия и приводит к повышению устойчивости прослойки среды, разделяющей частицы. Гидродинамич. сопротивление вытеснению жидкой дисперсионной среды из прослойки между сближающимися частицами - один из кинетич. факторов стабилизации Д. с. Он особенно эффективен в системах с высоковязкой дисперсионной средой, а при застекловывании последней делает систему неограниченно устойчивой к агрегации частиц и коалесценции. Структурно-мех. фактор стабилизации, по П. А. Ребиндеру, возникает при образовании на межфазной границе полимолекулярных защитных слоев из мицеллообразующих ПАВ, высокомолекулярных соед., а иногда и тонких сплошных или дискретных фазовых пленок. Межфазный защитный слой должен обладать способностью сопротивляться деформациям и разрушению, достаточной подвижностью для "залечивания" возникших в нем дефектов и, что особенно важно, быть лиофилизованным с внеш. стороны, обращенной в сторону дисперсионной среды. Если защитный слой недостаточно лиофилен, он, предохраняя частицы от коалесценции, не сможет предотвратить коагуляции. Структурно-мех. барьер является, по существу, комплексным фактором стабилизации, к-рый включает термодинамич., кинетич. и структурные составляющие. Он универсален и способен обеспечить высокую агрегативную устойчивость любых Д.с. с жидкой дисперсионной средой, в т. ч. высококонцентрированных, наиб. важных в практич. отношении. Осн. св-ва Д. с. определяются поверхностными явлениями: адсорбцией, образованием двойного электрического слоя и обусловленных им электрокинетических явлений, контактными взаимодействиями частиц дисперсной фазы. Размер частиц определяет оптич. (светорассеяние и др.) и молекулярно-кинетич. св-ва (диффузия, термофорез, осмос и др.). Д. с. повсеместно распространены в природе. Это - горные породы, грунты, почвы, атм. и гидросферные осадки, растит. и животные ткани. Д. с. широко используют в технол. процессах; в виде Д. с. выпускается большинство пром. продуктов и предметов бытового потребления. Высокодисперсные техн. материалы (наполненные пластики, дисперсноупрочненные композиц. материалы) отличаются чрезвычайно большой прочностью. На высокоразвитых пов-стях интенсивно протекают гетерог. и гетерог.-каталитич. хим. процессы. Учение о Д. с. и поверхностных явлениях в них составляет сущность коллоидной химии. Самостоят. раздел коллоидной химии - физико-химическая механика - изучаeт закономерности структурообразования и мех. св-ва структурированных Д. с. и материалов в их связи с физ.-хим. явлениями на межфазных границах.

Классификации дисперсных систем.

По степени раздробленности (дисперсности) системы делятся на следующие классы: грубодисперсные, размер частиц в которых более 10 -5 м; тонкодисперсные (микрогетерогенные) с размером частиц от 10 -5 до 10 -7 м; коллоидно-дисперсные (ультрамикро-гетерогенные) с частицами размером от 10 -7 до 10 -9 м. Если фиксировать внимание на двух основных компонентах дисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз.

Эта классификация была предложена Оствальдом и широко используется до настоящего времени. Недостатком классификации следует считать невозможность отнесения дисперсных систем, приготовленных с твердой или жидкой дисперсной фазой, к какому-либо классу, если размер частиц составляет несколько нанометров. Пример такой классификации приведен в табл. 1.

Академик П.А. Ребиндер предложил более совершенную классификацию дисперсных систем по агрегатным состояниям фаз. Он разделил все дисперсные системы на два класса: свободнодисперсные системы и сплошные (или связнодисперсные) системы (табл. 2 и 3). В свободнодисперсных системах дисперсная фаза не образует сплошных жестких структур (сеток, ферм или каркасов). Эти системы называют золями. В сплошных (связнодисперсных) системах частицы дисперсной фазы образуют жесткие пространственные структуры (сетки, каркасы, фермы). Такие системы оказывают сопротивление деформации сдвига. Их называют гелями.

Дисперсная система по классификации Ребиндера обозначается дробью, в которой дисперсная фаза ставится в числителе, а дисперсионная среда - в знаменателе. Например: Т 1 /Ж 2 . Индекс 1 обозначает дисперсную фазу, а индекс 2 - дисперсионную среду.

Коллоидная химия изучает свойства как тонко-, так и грубодисперсных систем; как свободно-, так и связнодисперсных систем.

Включение в одну науку столь большого количества разнообразных систем, различных как по природе фаз, так и по размерам частиц и агрегатному состоянию фаз, основано на том, что все они обладают общими свойствами - гетерогенностью и принципиальной термодинамической неустойчивостью. Центральное место в коллоидной химии занимают ультрамикрогетерогенные системы со свободными частицами. Это - так называемые, коллоидные системы.

Таблица 1

Классификация дисперсных систем по агрегатным состояниям фаз.

Дисперсион-ная среда

Дисперс-ная фаза

Примеры дисперсных систем

Рубиновое стекло; пигментированные волокна; сплавы; рисунок на ткани, нанесенный методом пигментной печати

Жемчуг, вода в граните, вода в бетоне, остаточный мономер в полимерно-мономерных частицах

Газо- образная

Газовые включения в различных твердых телах: пенобетоны, замороженные пены, пемза, вулканическая лава, полимерные пены, пенополиуретан

Суспензии, краски, пасты, золи, латексы

Эмульсии: молоко, нефть, сливочное масло, маргарин, замасливатели волокон

Газо- образная

Пены, в том числе для пожаротушения и пенных технологий замасливания волокон, беления и колорирования текстильных материалов

Газообразная

Дымы, космическая пыль, аэрозоли

Газообразная

Туманы, газы в момент сжижения

Газообразная

Газо- образная

Коллоидная система не образуется

Коллоидные системы необычайно лабильны, т.е. неустойчивы. Для многих из них достаточно прибавления ничтожного количества электролита, чтобы вызвать выпадение осадка. Причина столь легкого изменения состояния коллоидных систем связана с непостоянством степени их дисперсности. Различают два вида устойчивости любой раздробленной системы - кинетическую и агрегативную.

Таблица 2

Примеры свободнодисперсных систем

1. Дисперсные системы в газах

2. Дисперсные системы в жидкостях

Коллоидная дисперсность

Т 1 /Г 2 - пыль в верхних слоях атмосферы, аэрозоли.

Коллоидная дисперсность

Т 1 /Ж 2 - лиозоли, дисперсные красители в воде, латексы синтетических полимеров.

Грубая дисперсность

Грубая дисперсность

Т 1 /Г 2 - дымы

Ж 1 /Г 2 - туманы

Т 1 /Ж 2 - суспензии

Ж 1 /Ж 2 - жидкие эмульсии

Г 1 /Ж 2 - газовые эмульсии

3. Дисперсные системы в твердых телах

Т 1 /Т 2 - твердые золи, например, золь золота в стекле,

пигментированные волокна, наполненные полимеры

В основу этой классификации положено агрегатное состояние фаз дисперсной системы.

Понятие агрегативной устойчивости, которое впервые ввел Н.П. Песков, подразумевает отсутствие агрегирования, т.е. снижения степени дисперсности коллоидной системы при хранении. Для определения кинетической устойчивости необходимо изучать условия выделения диспергированных частиц в гравитационном или центробежном поле. Скорость подобного выделения зависит от интенсивности броуновского движения частиц, т.е. от степени дисперсности системы и разности плотности дисперсионной среды и дисперсной фазы, а также от вязкости среды.

Таблица 3

Связнодисперсные системы

Если хотят определить агрегативную устойчивость системы, то исследуют условия постоянства (или напротив - непостоянства) степени дисперсности системы. Одно из самых резких и характерных отличий коллоидной системы как от истинного раствора, так и от грубодисперсных систем состоит в том, что их степень дисперсности является чрезвычайно непостоянной величиной и может изменяться в зависимости от самых разнообразных причин.

В основе этой классификации лежит агрегатное состояние поверхности раздела фаз.

На основании изложенного выше дадим определение коллоидным системам.

Коллоидными системами называют двух-или многофазные системы, в которых одна фаза находится в виде отдельных мелких частиц, распределенных в другой фазе. Такие ультрамикрогетерогенные системы с определенной (коллоидной) дисперсностью проявляют способность к интенсивному броуновскому движению и обладают высокой кинетической устойчивостью.

Имея высокоразвитую поверхность раздела фаз и, следовательно, громадный избыток свободной поверхностной энергии, эти системы являются принципиально термодинамически неустойчивыми, что выражается в агрегации частиц, т.е. в отсутствии агрегативной устойчивости. Однако этими свойствами не исчерпываются все особенности, которыми коллоидные системы отличаются от других систем. Так, например, на первый взгляд кажется непонятным, почему коллоидные частицы, совершая энергичные движения и сталкиваясь между собой, не всегда слипаются в более крупные агрегаты и не выпадают в осадок, как этого следовало бы ожидать на основании второго закона термодинамики, так как при этом уменьшалась бы общая поверхность, а с ней и свободная энергия.

Оказывается, во многих случаях устойчивость таких систем связана с наличием слоя стабилизатора на поверхности коллоидных частиц. Таким образом, необходимым условием создания устойчивых коллоидных систем является присутствие третьего компонента - стабилизатора. Стабилизаторами коллоидных систем могут быть электролиты или некоторые другие вещества, не имеющие электролитной природы, например высокомолекулярные соединения (ВМС) или поверхностно-активные вещества (ПАВ). Механизм стабилизации электролитами и неэлектролитами существенно различен.

Влияние электролитов на устойчивость коллоидных систем носит сложный характер. В одних случаях ничтожные добавки электролита способны привести к нарушению устойчивости системы. В других - введение электролита способствует увеличению стабильности.

Образование адсорбционных слоев таких стабилизаторов, как ПАВ, приобретает особенно большое значение при наличии двухмерных структур, обладающих повышенными структурно-механическими свойствами. Во многих случаях стабилизация достигается при покрытии монослоем всего 40-60 % поверхности коллоидных частиц, когда защитный слой имеет прерывистый характер (в форме островков). Максимальная устойчивость достигается, естественно, при образовании полностью насыщенного мономолекулярного слоя. Структурно-механические свойства адсорбционных слоев в значительной мере определяют поведение коллоидных систем. Эти слои могут быть образованы или изменены небольшими количествами каких-либо растворенных веществ, поэтому создается возможность регулирования ряда свойств коллоидных систем, что широко используется в различных практических приложениях.

Коллоидные системы, состоящие из частиц диспергированного вещества, способных свободно перемещаться в жидкой дисперсионной среде совместно с адсорбированными на их поверхности молекулами или ионами третьего компонента (стабилизатора), называют лиозолями, а сами частицы, обладающие сложным строением - мицеллами.

По характеру взаимодействия коллоидных частиц с дисперсионной средой лиозоли могут быть разделены на лиофильные и лиофобные. Впервые эта классификация была предложена немецким ученым-коллоидником Фрейндлихом. Он разделил все системы на два класса - лиофильные и лиофобные. В соответствии с представлениями, развитыми Фрейндлихом, лиофобными называют системы, частицы дисперсной фазы которых не взаимодействуют с дисперсионной средой, не сольватируются и не растворяются в ней. Лиофильные- это системы, частицы дисперсной фазы которых интенсивно взаимодействуют с дисперсионной средой.

К лиофобным системам относятся золи драгоценных металлов, золи металлоидов (серы, селена, теллура), дисперсии полимеров в воде (например, полистирола, фторолона), золи сульфидов мышьяка, сурьмы, кадмия, ртути, золи гидроксидов железа, алюминия и т.д. Эти системы характеризуются, так называемой, кинетической устойчивостью и агрегативной неустойчивостью и требуют стабилизации. К лиофильным коллоидным системам Фрейндлих отнес растворы, образующиеся при растворении природных или синтетических ВМС. Таковы растворы белков, крахмала, пектинов, камедей, эфиров целлюлозы и разнообразных смол, как природных так и синтетических.

Таким образом, растворы ВМС рассматривались ранее как лиофильные коллоидные системы. Они считались двухфазными дисперсными системами и таким образом сущность классификации Фрейндлиха сводилась к молекулярным взаимодействиям между дисперсной фазой и дисперсионной средой. Именно на этом основании проводилось разделение на лиофильные и лиофобные системы. Лиофильные системы считались двух- или многофазными, термодинамически неустойчивыми, неподчиняющимися правилу фаз Гиббса. Но такое представление оказалось неправильным. На самом деле в настоящее время достоверно установлено, что растворы ВМС - это истинные растворы, т.е. однофазные системы, гомогенные, термодинамически устойчивые и подчиняющиеся правилу фаз Гиббса. Считалось, что обратимость - это характерное свойство лиофильных коллоидных систем, но это не так, потому что в данном случае растворы ВМС не являются дисперсными системами.

В связи с этим академик В.А. Каргин еще в 1948 г. обратил внимание на то, что классификация Фрейндлиха совершенно неверна и даже более того - вредна.

Чтобы не менять смысла этих терминов, П.А. Ребиндер предложил оформить понятия лиофильные и лиофобные коллоидные системы. Дисперсные много-или двухфазные системы он разделил на два класса, исходя из величины удельной межфазовой энергии (поверхностного натяжения).

К лиофобным системам были отнесены дисперсные системы с достаточно высоким межфазовым натяжением (s 12), большим некоторого граничного значения s m:

s 12 > s m . (1)

Эти системы характеризуются большой межфазовой свободной энергией, поэтому граница раздела фаз выражена резко: система является агрегативно неустойчивой и требует введения стабилизатора. Дисперсность таких систем является произвольной.

Лиофильные системы - это двухфазные коллоидные системы с низкой, хотя и положительной межфазовой свободной энергией, меньшей или равной граничному значению,

s 12 ≤ s m . (2)

Это системы с очень малой межфазовой энергией, они термодинамически устойчивы и образуются самопроизвольно. Дисперсность их вполне определенна и находится в коллоидной области.

Тот факт, что дисперсные системы классифицируются по величине свободной поверхностной энергии показывает, что коллоидные явления тесно связаны со свойствами поверхности раздела фаз.

К лиофильным системам относят:

1) так называемые критические эмульсии, образующиеся в результате снижения поверхностного натяжения при нагревании до температуры, близкой к температуре неограниченного смешения, или в результате прибавления очень больших количеств ПАВ;

2) ассоциативные коллоидные системы, образуемые в водной среде веществами типа мыл, некоторых красителей и дубителей, а в неводной среде некоторыми ПАВ. Такие вещества в разбавленных растворах находятся в молекулярном состоянии, при увеличении концентрации происходит агрегация молекул с образованием частиц коллоидного размера, т.е. образуются мицеллы. Концентрацию вещества в растворе, при которой происходит переход от истинного раствора к коллоидному, принято называть критической концентрацией мицеллообразования (ККМ).

Классификацию дисперсных систем можно проводитьпо удельной поверхности и пористости дисперсной фазы.

В тех процессах, в которых участвуют две соприкасающиеся фазы, большое значение имеют свойства поверхности раздела, или пограничного слоя, отделяющего одну фазу от другой. Молекулы, составляющие такие слои, обладают особыми свойствами. Если рассматривать монолитную фазу, то числом молекул, образующих поверхностный слой, можно пренебречь по сравнению с огромным количеством молекул в объеме тела. Можно считать, что запас энергии системы пропорционален массе, содержащейся в объеме тела.

При измельчении сплошного тела число молекул в поверхностном слое возрастает и достигает максимального значения в коллоидно-дисперсных системах. Поэтому процессы, протекающие в дисперсных системах, обусловлены свойствами поверхностных слоев на границе раздела. Образование пен, эмульсий, туманов, процессы флотации, смачивания и диспергирования, сорбционная техника и многие-многие другие основаны на свойствах межфазовых поверхностей в дисперсных системах.

Удельной поверхностью называют отношение поверхности тела к его объему или массе:

А уд = А/V или А уд =А/Vr , (3)

где А уд, А - удельная и суммарная поверхность, соответственно; r - плотность вещества, V - объем тела.

Для кубических частиц

А уд = 6а 2 /а 3 = 6а -1

А уд = 6a 2 /а 3 r = 6/ar (м 2 /кг). (4)

Для сферических частиц

А уд = 4 r 2 /(4/3 r 3) (м -1),

А уд = 3/r (м -1),

А уд = 3/rr (м 2 /кг). (5)

Если взять кубик вещества, три его стороны разделить на 10 частей и провести плоскости в трех направлениях, то получим более мелкие кубики. Такой процесс можно рассматривать как моделирование процесса диспергирования. Изменение удельной поверхности в процессе диспергирования показано в табл. 4.

Таблица 4

Зависимость удельной поверхности от дисперсности

В текстильных коллоидных системах большую роль играют волокна, нити и пленки. Удельную поверхность таких систем можно рассчитать по формулам:

для пленки

А уд = 2l 2 /l 2 а = 2/а, (6)

где а- толщина пленки, l- ее ширина и длина;

для цилиндра (волокна, нити)

А уд = 2lr /r 2 l = 2/r, (7)

где r - радиус цилиндра, l- его длина.

Связнодисперсные системы - пористые тела - наряду с внешней удельной поверхностью можно характеризовать размером (радиусом) пор, их объемом и внутренней удельной поверхностью. Удобную классификацию пор по размерам предложил М.М. Дубинин. В соответствии с этой классификацией все пористые тела можно разделить на три класса (в зависимости от адсорбционных свойств): микропористые тела с радиусом пор 2·10 -9 м, мезопористые (переходнопористые) - (2/50) ·10 -9 м, макропористые 50·10 -9 м.

Микропористые тела в последнее время разделяют на ультра- и супермикропористые. Такая классификация весьма приближенно отражает весь спектр возможных размеров пор (от макропор через мезопоры и микропоры до субатомных «пор» в виде промежутков между макрокристаллами в полимерах или точечных дефектов в кристаллах). В этой связи следует отметить, что любая классификация не может полностью охватить все многообразие дисперсных систем, существующих в природе и технологической практике.

Структурообразование в дисперсных системах и в растворах полимеров.

При повышении концентрации дисперсной фазы в дисперсных системах (или концентрации растворенных полимеров) возможно образование таких агрегатов частиц (или ассоциатов макромолекул), которые вызывают отклонение течения таких систем от законов Ньютона и Пуазейля. Такие жидкости называют аномально вязкими, а концентрацию, при которой происходит качественное изменение свойств системы, - критической концентрацией структурообразования. При достижении критической концентрации дисперсной фазы в дисперсной системе самопроизвольно возникает пространственная структура из взаимодействующих между собой частиц.

К образованию прочной структуры, называемой кристаллической, приводит непосредственный контакт между частицами, т.е. такой контакт, при котором граница раздела фаз между частицами исчезает. Этот процесс наблюдается при формировании дисперсной системы методом конденсации, когда отдельные кристаллы срастаются: при отвердении бетона, при формировании бумажного полотна или нетканого материала, образовании пространственных сеток при полимеризации и т.д. Взаимодействие частиц через тонкую прослойку жидкой фазы приводит к формированию коагуляционных контактов. После разрушения эти контакты обратимо восстанавливаются. Это свойство называется «тиксотропия». Такие контакты возможны в пастах пигментов, в керамических массах, в растворах и дисперсиях полимеров. На способности обратимо восстанавливать структуру после снятия нагрузки основаны действие шлихтующих препаратов и загустителей в печатных красках при колорировании текстильных материалов, а также склеивание латексом волокон при получении нетканых материалов, сохранение формы керамических изделий, удерживание лаков, красок и эмалей на вертикальных стенках и т.д.

Коагуляционные структуры характеризуются относительно низкими энергиями взаимодействия и в большинстве случаев возникают при частичном снижении устойчивости дисперсных систем. В таких структурах среднее расстояние между частицами соответствует равновесной толщине пленок жидкости и характеризуется первым или вторым минимумом на кривых потенциальной энергии парного взаимодействия частиц.

В соответствии со способом образования коагуляционных структур частицы могут располагаться на расстояниях Н 1 » 10 -9 м или Н 2 » 10 -7 м.

Энергия взаимодействия в первом потенциальном минимуме на два порядка превышает энергию взаимодействия во втором потенциальном минимуме (потенциальной яме). На практике чаще встречается структурообразование с фиксированием частиц во втором потенциальном минимуме.

Объемная доля дисперсной фазы, при которой происходит образование коагуляционной структуры, зависит от формы частиц. Асимметричные частицы могут образовывать структуру при значительно меньшей концентрации, чем сферические. Асимметричная форма частиц характерна для гидроксидов железа и алюминия, для глины и некоторых пигментов. Прочность структуры характеризуют напряжением, необходимым для разрушения пространственной структуры.

Структурированные жидкости не подчиняются законам течения Ньютона и Пуазейля. Различают два типа структурированной жидкости: с жидкообразной и с твердообразной структурой.

Жидкости с жидкообразной структурой характеризуются реологическими кривыми течения, у которых отсутствует критическое напряжение сдвига, а присутствуют два линейных участка псевдоньютоновского течения.

Твердообразные структуры должны быть разрушены прежде, чем начинается течение. Иными словами такая структура до разрушения обладает свойствами твердого тела.

Область коллоидной химии, занимающаяся изучением закономерностей образования и разрушения структуры в дисперсных системах и в растворах полимеров, называется «реологией». В реологии оперируют такими понятиями, как деформация, т.е. относительное смещение части системы без нарушения ее целостности. Деформация может быть упругой и остаточной. При упругой деформации форма тела восстанавливается после снятия напряжения.

На рис. 2.30 показана схема однородного сдвига куба с длиной ребра l, условно выделенного из изучаемой системы, под действием касательного напряжения Р. Мерой сдвига служит отношение смещения х к первоначальной длине ребра куба l, т.е. высота, на которой происходит смещение

x / l = tga = g , (2.4.52)

где a - угол смещения элемента структуры.

Мерой скорости деформации служит градиент скорости смещения:

Реология оперирует тремя идеализированными зависимостями между Р и g(или) для описания трех структурных свойств (упругости, вязкости и пластичности) и использует комбинации этих зависимостей для описания более сложных процессов, протекающих в структурированных дисперсных системах.

Упругая деформация (или упругость) пропорциональна напряжению сдвига:

где Е - модуль Юнга.

Уравнение (2.4.54) носит название закона Гука. Зависимость, которая описывается уравнением (2.4.54) для идеального упругого тела, показана на рис. 2.31, а. Физическую модель идеального упругого тела Гука изображают обычно в виде спиральной пружины, закрепленной за один из концов и растягиевамой за другой.

Мерой упругости служит модуль Юнга, определяемый как ctga зависимости, приведенной на рис. 2.31, а. Эта зависимость для идеального тела линейна. Физический смысл упругой деформации заключается в изменении межатомных расстояний при создании напряжения и стремлении тела вернуть атомы в исходное равновесное состояние, характеризуемое минимумом свободной энергии. В этой связи идеальное упругое тело восстанавливает свою форму и размеры практически мгновенно после снятия напряжения. Для восстановления первоначальных размеров и формы в реальных упругих телах требуется некоторое незначительное время.

Вязкое течение описывают уравнением Ньютона (2.4.1, а) в форме. Схема модели вязкого течения и зависимость градиента скорости смещения от напряжения приведены на рис. 2.31, б. Вязкость жидкости определяется как сtgb. В качестве механической модели идеальной вязкой ньютоновской жидкости служит поршень в цилиндре, между которыми возможно перетекание.

Физическая модель вязкого течения связана с термически активируемым процессом перестройки взаимодействующих друг с

другом молекул. Естественно, что при действии напряжения одни связи между молекулами жидкости разрываются, а другие - образуются вновь. В истинно вязкой ньютоновской жидкости коэффициент вязкости остается постоянным от очень малых нагрузок вплоть до напряжений, при которых ламинарный режим течения переходит в турбулентный. В ряде случаев при изучении вязкого течения используют величину, обратную вязкости, которую называют текучестью.

Пластичность, или пластическое течение, не является линейной функцией напряжения. В качестве модели пластической деформации используют твердое тело, лежащее на плоскости (рис. 2.31, в) и удерживаемое на месте силами сухого трения вплоть до некоторого напряжения, способного преодолеть это сухое (кулоновское) трение. Такое течение возможно, например, в пастах пигментов, когда происходит последовательное разрушение-восста-новление контактов между частицами, которые фиксируются в пространстве через некоторую прослойку жидкой фазы. В том случае, если в системе образуется кристаллическая структура при непосредственном контакте между частицами, течение начнется только после необратимого разрушения таких контактов и критическое напряжение будет соответствовать их прочности.

Конечно, в практическом приложении структурообразования

и разрушения (например, при разрушении структуры в загущенных полимерами печатных красках при перемешивании и в процессе ее нанесения на ткань и при восстановлении структуры в том рисунке, который нанесен на ткань, или при нанесении раствора полимера - шлихтующего препарата - на нити), одновременно могут проявляться и различные виды деформаций: упругая деформация, затем вязкое или пластическое течение и последующее структурирование.

Если в системе внешнее напряжение расходуется на преодоление упругой деформации и вязкого течения, то используют модель, предложенную Максвеллом, из последовательно соединенных элементов моделей Гука и Ньютона (рис. 2.32, а). В таких системах типично проявление релаксации напряжения, описываемого уравнением

P 0 (t) = P 0 exp(t/t p), (2.4.55)

где P 0 = E 0 g 0 - начальное напряжение; t р = h/Е - время релаксации.

При t >t p модель Максвелла соответствует жидкоподобному течению. Явление релаксации связано с тем, что для перестройки структуры при относительно невысоком напряжении требуется определенное время. Поэтому при кратковременном (мгновенном) приложении напряжения в системе возникают постепенно снижающиеся внутренние напряжения. Возможно, что снятие внутреннего напряжения будет реализовано при t®¥. Для жидкости, описываемой моделью Максвелла, характерна необратимость деформации.

Таким образом, свойства системы (твердое тело или жидкость) зависят от времени релаксации, определяемого по пересечению касательной к начальному участку деформационной кривой с осью абсцисс (см.рис. 2.32, а).

Если в системе наблюдается нарастание деформации во времени при постоянном напряжении и полный спад деформации в течение определенного времени после снятия нагрузки, то такие системы описываются моделью Кельвина-Фойгта, состоящей из соединенных параллельно элементов моделей Гука и Ньютона (рис. 2.33). Эта модель характерна для механически обратимого твердообразного структурированного тела. Для такой структуры обычно используют уравнение при Р = соnst

g(t) = P 0 / E . (2.4.56)

Это уравнение описывает восходящую ветвь кривой на рис 2.33. Нисходящая ветвь (при Р = 0) описывается уравнением

g = g m exp(- t/t p) . (2.4.57)

Наиболее точной для описания поведения реальных систем следует считать модель из соединенных параллельно элементов моделей Ньтона и Кулона, предложенную Бингамом. Схема модели и деформационная кривая показаны на рис. 2.34.

При напряжениях, меньших напряжения текучести Р т, система обладает упругими свойствами. После достижения этого напряжения начинается пластическое течение, для описания которого Бингам предложил уравнение

Такое вязкопластическое течение характерно для многих коагуляционных структур - пигментированных расплавов и растворов полимеров, печатных красок, глинистых растворов, концентрированных эмульсий и т.д. Часто увеличение напряжения приводит к дополнительному разрушению структуры. В таких системах следует говорить об «эффективной» вязкости h ef , уменьшающейся при увеличении напряжения до некоторого предельного значения, соответствующего полному разрушению структуры в системе.

Свойства дисперсных систем и определение размера частиц.

Раздел «Свойства коллоидных систем» включает рассмотрение диффузии, броуновского движения, осмоса, седиментации, рассеяния света и его поглощения, рассматриваются также общие принципы определения наиболее важной характеристики систем - среднего размера частиц. Частицы в дисперсных системах обычно имеют распределение по размерам, поэтому знание студентами способов определения параметров этих распределений позволит им правильно понимать, что свойства коллоидных систем являются функцией не только степени раздробленности (дисперсности) измельченной (дисперсной) фазы, но и ее распределения по размерам частиц.

Этот факт проявляется в тех производственных дисперсных системах, которые применяются в производстве и облагораживании текстильных материалов, например, при использовании дисперсных и сернистых красителей или дисперсий пигментов при печатании рисунков на тканях и окрашивании волокон в массе. В процессе хранения в дисперсных системах (красках) на основе пигментов или в колорированной массе волокнообразующего полимера происходит выделение грубодисперсной фракции или неравномерное распределение частиц в массе полимера, что может изменить оттенок или даже цвет колорированных волокон, так как интенсивность отражения света и его рассеяние зависят от размера частиц.

Определение размера частиц или капель эмульсии важно также и для создания эффективного процесса эмульсирования натуральных волокон в процессе их переработки или при авиважной обработке синтетических волокон. Взаимодействие волокон с частицами, например, полимера латексов, применяемых для склеивания волокон в нетканых материалах или при аппретировании тканей, зависит от их размера, поэтому при рассмотрении теоретических аспектов прилипания частиц к волокнам, коагуляции (агрегирования частиц) и гетерокоагуляции (осаждения частиц на волокнах), умение определять размеры частиц несомненно должно представлять собой один из важнейших навыков, которые выработают студенты, изучившие этот раздел учебника.

Оценка дисперсности гетерогенных систем является сложной задачей в связи с разнообразием формы их частиц, полидисперсностью, возможным агрегированием первичных частиц. Поэтому определяют обычно некоторую среднюю величину и погрешность в 10-20 % считается допустимой.


Список использованной литературы:

1. Ребиндер П. А., Поверхностные явления в дисперсных системах.

2. Коллоидная химия, Избр. труды, М., 1978; Дерягин Б. В., "Успехи химии", 1979, т. 48, в. 4, с. 675-721

3. Урьев Н. Б., Высококонцентрированные дисперсные системы, М., 1980

4. Коагуляционные контакты в дисперсных системах, М., 1982

5. Капиллярная химия, под ред. К. Тамару, пер. с япон., М., 1983

6. Щукин Е. Д., Перцов А. В., Амелина Е. А., Коллоидная химия, М., 1982

7. Также лит. при статьях Коллоидная химия. Поверхностные явления. Физико-химическая механика. Л. А. Шиц. Е. Д. Щукин.

ПЛАН: 1. Ведение.............................................................................2 2. Основные типы дисперсных систем..........................................2 3. Образование дисперсных систем.......................................

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство общего и профессионального образования Свердловской области

«Екатеринбургский колледж транспортного строительства»

по дисциплине « Химия»

Дисперсные системы

Для химии наибольшее значение имеют дисперсионные системы, в которых средой является вода и жидкие растворы.

Чистые вещества в природе встречаются очень редко. Смеси различных веществ в разных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы. Знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и природе. Цивилизация Древнего Египта не состоялась бы без нильского ила; без воды, воздуха, горных пород, минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов.

Как известно, химической основой существования живого организма является обмен белков в нем. В среднем концентрация белков в организме составляет от 18 до 21 %. Большинство белков растворяются в воде (концентрация которой в организме человека и животных составляет примерно 65 %) и образуют коллоидные растворы.

Дисперсные системы - это гетерогенные системы, состоящие из двух или большего числа фаз с сильно развитой поверхностью раздела между ними.

Особые свойства дисперсных систем обусловлены именно малым размером частиц и наличием большой межфазной поверхности. В связи с этим определяющими являются свойства поверхности, а не частиц в целом. Характерными являются процессы, происходящие на поверхности, а не внутри фазы. Отсюда становится понятным, почему коллоидную химию называют физико-химией поверхностных явлений и дисперсных систем.

Дисперсная фаза и дисперсная среда. То вещество (или несколько веществ), которое присутствует в дисперсной системе в меньшем количестве и распределено в объеме, называют дисперсной фазой. Присутствующее в бьльшем количестве вещество, в объеме которого распределена дисперсная фаза, называют дисперсионной средой. Между дисперсионной средой и частицами дисперсной фазы существует поверхность раздела, именно поэтому дисперсные системы называют гетерогенными, т.е. неоднородными.

Классификация дисперсных систем

И дисперсионную среду, и дисперсную фазу могут составлять вещества, находящиеся в различных агрегатных состояниях. В зависимости от сочетания состояний дисперсионной среды и дисперсной фазы можно выделить восемь видов таких систем

Классификация дисперсных систем по агрегатному состоянию

Дисперсионная среда

Дисперсная фаза

Примеры некоторых природных и бытовых дисперсных систем

Жидкость

Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе)

Твердое вещество

Пыль в воздухе, дымы, смог, самумы (пыльные и песчаные бури)

Жидкость

Шипучие напитки, пена в ванне

Жидкость

Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)

Твердое вещество

Кисели, студни, клеи, взвешенный в воде речной или морской ил, строительные растворы

Твердое вещество

Снежный наст с пузырьками воздуха в нем, почва, текстиль- ные ткани, кирпич и керамика, поролон, пористый шоколад, порошки

Жидкость

Влажная почва, медицинские и косметические средства (мази, тушь, помада и т.д.)

Твердое вещество

Горные породы, цветные стекла, некоторые сплавы

Так же в качестве классификационного признака можно выделить такое понятие как размер частиц дисперсной системы:

Грубодисперсные (> 10 мкм): сахар-песок, грунты, туман, капли дождя, вулканический пепел, магма и т. п.

Среднедисперсные (0,1-10 мкм): эритроциты крови человека, кишечная палочка и т. п.

дисперсный эмульсия суспензия гель

Высокодисперсные (1-100 нм): вирус гриппа, дым, муть в природных водах, искусственно полученные золи различных веществ, водные растворы природных полимеров (альбумин, желатин и др.) и т. п.

Наноразмерные (1-10 нм): молекула гликогена, тонкие поры угля, золи металлов, полученные в присутствии молекул органических веществ, ограничивающих рост частиц, углеродные нанотрубки, магнитные нанонити из железа, никеля и т. п.

Грубодисперсные системы: эмульсии, суспензии, аэрозоли

По величине частиц вещества, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные с размерами частиц более 100 нм и тонкодисперсные с размерами частиц от 1 до 100 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Раствор однороден, поверхности раздела между частицами и средой нет, а потому к дисперсным системам он не относится. Грубодисперсные системы делятся на три группы: эмульсии, суспензии и аэрозоли.

Эмульсии - это дисперсные системы с жидкой дисперсионной средой и жидкой дисперсной фазой.

Их можно также разделить на две группы: 1) прямые - капли неполярной жидкости в полярной среде (масло в воде); 2) обратные (вода в масле). Изменение состава эмульсий или внешнее воздействие могут привести к превращению прямой эмульсии в обратную и наоборот. Примерами наиболее известных природных эмульсий являются молоко (прямая эмульсия) и нефть (обратная эмульсия). Типичная биологическая эмульсия - это капельки жира в лимфе.

Из известных в практической деятельности человека эмульсий можно назвать смазочно-охлаждающие жидкости, битумные материалы, пестицидные препараты, лекарственные и косметические средства, пищевые продукты. Например, в медицинской практике широко применяют жировые эмульсии для энергетического обеспечения голодающего или ослабленного организма путем внутривенного вливания. Для получения таких эмульсий используют оливковое, хлопковое и соевое масла. В химической технологии широко используют эмульсионную полимеризацию как основной метод получения каучуков, полистирола, поливинилацетата и др. Суспензии - это грубодисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой.

Обычно частицы дисперсной фазы суспензии настолько велики, что оседают под действием силы тяжести - седиментируют. Системы, в которых седиментация идет очень медленно из-за малой разности в плотности дисперсной фазы и дисперсионной среды, также называют взвесями. Практически значимыми строительными суспензиями являются побелка («известковое молоко»), эмалевые краски, различные строительные взвеси, например те, которые называют «цементным раствором». К суспензиям относят также медицинские препараты, например жидкие мази - линименты. Особую группу составляют грубодисперсные системы, в которых концентрация дисперсной фазы относительно высока по сравнению с ее небольшой концентрацией в суспензиях. Такие дисперсные системы называют пастами. Например, вам хорошо известные из повседневной жизни зубные, косметические, гигиенические и др.

Аэрозоли - это грубодисперсные системы, в которых дисперсионной средой является воздух, а дисперсной фазой могут быть капельки жидкости (облака, радуга, выпущенный из баллончика лак для волос или дезодорант) или частицы твердого вещества (пылевое облако, смерч)

Коллоидные системы - в них размеры коллоидных частиц достигают до 100 нм. Такие частицы легко проникают через поры бумажных фильтров, однако не проникают через поры биологических мембран растений и животных. Поскольку коллоидные частицы (мицеллы) имеют электрозаряд и сольватные ионные оболочки, благодаря которым они остаются во взвешенном состоянии, они достаточно продолжительное время могут не выпадать в осадок. Ярким примером коллоидной системы являются растворы желатина, альбумина, гуммиарабика, коллоидные растворы золота и серебра.

Коллоидные системы занимают промежуточное положение между грубодисперсными системами и истинными растворами. Они широко распространены в природе. Почва, глина, природные воды, многие минералы, в том числе и некоторые драгоценные камни, - все это коллоидные системы.

Различают две группы коллоидных растворов: жидкие (коллоидные растворы - золи) и гелеобразные (студни - гели).

Большинство биологических жидкостей клетки (уже упомянутые цитоплазма, ядерный сок - кариоплазма, содержимое вакуолей) и живого организма в целом являются коллоидными растворами (золями). Все процессы жизнедеятельности, которые происходят в живых организмах, связаны с коллоидным состоянием материи. В каждой живой клетке биополимеры (нуклеиновые кислоты, белки, гикозаминогликаны, гликоген) находятся в виде дисперсных систем.

Гели - это коллоидные системы, в которых частицы дисперсной фазы образуют пространственную структуру.

Гели могут быть: пищевые - мармелад, зефир, холодец, желе; биологические- хрящи, сухожилия, волосы, мышечная и нервные ткани, тела медуз; косметические- гели для душа, крема; медицинские- лекарства, мази; минеральные - жемчуг, опал, сердолик, халцедон.

Большое значение имеют коллоидные системы для биологии и медицины. В состав любого живого организма входят твердые, жидкие и газообразные вещества, находящиеся в сложном взаимоотношении с окружающей средой. С химической точки зрения организм в целом - это сложнейшая совокупность многих коллоидных систем.

Биологические жидкости (кровь, плазма, лимфа, спинномозговая жидкость и др.) представляют собой коллоидные системы, в которых такие органические соединения, как белки, холестерин, гликоген и многие другие, находятся в коллоидном состоянии. Почему же именно ему природа отдает такое предпочтение? Эта особенность связана, в первую очередь, с тем, что вещество в коллоидном состоянии имеет большую поверхность раздела между фазами, что способствует лучшему протеканию реакций обмена веществ.

Примеры природных и искусственных дисперсных систем. Минералы и горные породы как природные смеси

Вся окружающая нас природа - организмы животных и растений, гидросфера и атмосфера, земная кора и недра представляют собой сложную совокупность множества разнообразных и разнотипных грубодисперсных и коллоидных систем. Облака нашей планеты представляют собой такие же живые сущности, как вся природа, которая нас окружает. Они имеют огромное значение для Земли, так как являются информационными каналами. Ведь облака состоят из капиллярной субстанции воды, а вода, как известно, очень хороший накопитель информации. Круговорот воды в природе приводит к тому, что информация о состоянии планеты и настроении людей накапливается в атмосфере, и вместе с облаками передвигается по всему пространству Земли. Удивительное творение природы- облака, которое доставляет человеку радость, эстетическое удовольствие и просто желание иногда посмотреть на небо.

Туман тоже может быть примером природной дисперсной системы, скопление воды в воздухе, когда образуются мельчайшие продукты конденсации водяного пара (при температуре воздуха выше?10° -- мельчайшие капельки воды, при?10..?15° -- смесь капелек воды и кристалликов льда, при температуре ниже?15° -- кристаллики льда, сверкающие в солнечных лучах или в свете луны и фонарей). Относительная влажность воздуха при туманах обычно близка к 100 % (по крайней мере, превышает 85-90 %). Однако в сильные морозы (?30° и ниже) в населённых пунктах, на железнодорожных станциях и аэродромах туманы могут наблюдаться при любой относительной влажности воздуха (даже менее 50 %) -- за счёт конденсации водяного пара, образующегося при сгорании топлива (в двигателях, печах и т. п.) и выбрасываемого в атмосферу через выхлопные трубы и дымоходы.

Непрерывная продолжительность туманов составляет обычно от нескольких часов (а иногда полчаса-час) до нескольких суток, особенно в холодный период года.

Туманы препятствуют нормальной работе всех видов транспорта (особенно авиации), поэтому прогноз туманов имеет большое народно-хозяйственное значение.

Примером сложной дисперсной системы может служить молоко, основными составными частями которого (не считая воды) являются жир, казеин и молочный сахар. Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, наприм., уксусом. В естественных условиях выделение казеина происходит при скисании молока. Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.

Многие газы, жидкости и твердые вещества растворяются в воде. Сахар и поваренная соль легко растворяются в воде; углекислый газ, аммиак и многие другие вещества, сталкиваясь с водой, переходят в раствор и теряют свое предыдущее агрегатное состояние. Растворенное вещество определенным способом можно выделить из раствора. Если выпарить раствор поваренной соли, то соль остается в виде твердых кристаллов.

При растворении веществ в воде (или ином растворителе) образуется однородная (гомогенная) система. Таким образом, раствором называется гомогенная система, состоящая из двух или более компонентов. Растворы могут быть жидкими, твердыми и газообразными. К жидким растворам относятся, например, раствор сахара или поваренной соли в воде, спирта в воде и тому подобное. К твердым растворам одного металла в другом относятся сплавы: латунь -- это сплав меди и цинка, бронза -- сплав меди и олова и тому подобное. Газообразным веществом является воздух или вообще любая смесь газов.

Минералы и горные породы как природные смеси.

Общепринято под горными породами понимать естественные минеральные агрегаты определенного состава и строения, сформировавшиеся в результате геологических процессов и залегающие в земной коре в виде самостоятельных тел. В соответствии с главными геологическими процессами, приводящими к образованию горных пород, среди них по происхождению различают три генетических класса: осадочные, магматические и метаморфические.

В природе нет просто горных пород, а это или твердые дисперсные фазы суспензий, или дисперсионные среды пористых тел, или затвердевшие эмульсии.

Геологи говорят, что на дне моря накапливается глина. В реальности отложенный глинистый осадок представляет собой рыхлую тонкодисперсную минеральную массу, насыщенную морской водой. Начальная пористость глинистых илов колеблется от 70 до 90%, или в 1 м 3 ила содержится 700-900 л морской воды. Как известно, сосуд объемом в 1 м 3 вмещает 1000 л воды. Такое образование практически из одной воды (дисперсионной среды), в которой в небольшом количестве изолировано друг от друга находятся глинистые частицы, горной породой назвать нельзя. Это - физико-химическая система типа суспензии.

С погружением в недра литосферы и перекрытием новыми слоями, из суспензии начинает отжиматься вода, глинистые минералы контактируют, сдавливают друг друга, что приводит к уменьшению расстояния атомов их кристаллических решеток. Вещество дисперсной фазы суспензии начинает перекристаллизовываться с увеличением размера кристаллов. Рыхлая минеральная глинистая масса цементируется возникающими кристалликами, переходы в сцементированную глинистую массу - аргиллит.

Возрастающая литостатическая нагрузка (масса) накапливающихся сверху слоев вызывает сильное одностороннее давление. Согласно принципу (закону) Рикке, минералы начинают растворяться по направлению этого давления. При продолжающимся удалении части дисперсионной среды суспензии, что сопровождается уменьшением плотности системы, минералы кристаллизуются в направлении, перпендикулярном статическому давлению. С увеличением размера кристаллов физико-химическая система из суспензии переходит в систему пористого тела из кристаллической дисперсионной среды и нагретой жидкой дисперсной фазы. В кристаллической дисперсионной среде возникает сланцеватая (кристаллические сланцы) и параллельно-полосчатая (гнейсы) текстура.

Ниже из пористого тела удаляется водно-силикатный раствор базальтового состава. Остающаяся дисперсионная среда из кристаллов гранита имеет плотность, меньшую глинистых частиц. Уменьшение плотности фиксируется формированием гранита хаотической текстуры.

При перекристаллизации глинистой дисперсной фазы суспензии в кристаллическую с увеличением размера кристаллов дисперсионную среду пористого тела сопровождается выделением из глинистых минералов потенциальной свободной поверхностной, внутренней энергии (аккумулированной при гипергенезе солнечной энергии) в виде кинетической тепловой. Перекристаллизация вещества с удалением из силикатных минералов примесей (в конечном итоге всех катионов) приводит к уменьшению с глубиной плотности вещества, что способствует изменению координационного числа алюминия в глинах с 4 до 6 в полевых шпатах гнейсов и гранитов, что сопровождается выделением геохимической энергии в виде тепла.

Удаляемый нагретый водно-силикатный раствор базальтового состава представляет собой эмульсию из растворов электролитов, неэлектролитов, а силикатная часть ее составляет коллоидный раствор.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

Синерезис. Со временем структура гелей нарушается - из них выделяется жидкость. Происходит синерезис - самопроизвольное уменьшение объема геля, сопровождающееся отделением жидкости. Синерезис определяет сроки годности пищевых, медицинских и косметических гелей. Очень важен биологический синерезис при приготовлении сыра, творога. У теплокровных животных есть процесс, который называется свертывание крови: под действием специфических факторов растворимый белок крови фибриноген превращается в фибрин, сгусток которого в процессе синерезиса уплотняется и закупоривает ранку. Если свертывание крови затруднено, то говорят о возможности заболевания человека гемофилией. Носителями гена гемофилии являются женщины, а заболевают ею мужчины. Хорошо известен исторический династический пример: царствующая более 300 лет российская династия Романовых страдала этим заболеванием.

Заключение

В дисперсных системах удельная поверхность дисперсной фазы очень велика. Одно из наиболее важных следствий большой поверхности дисперсной фазы заключается в том, что лиофобные дисперсные системы обладают избыточной поверхностной энергией, а, следовательно, являются термодинамически неустойчивыми. Поэтому в дисперсных системах протекают различные самопроизвольные процессы, которые ведут к уменьшению избытка энергии. Наиболее общими являются процессы уменьшения удельной поверхности за счет укрупнения частиц. В итоге такие процессы приводят к разрушению системы. Таким образом, ключевое свойство, которое характеризует само существование дисперсных систем - это их устойчивость, или, наоборот, неустойчивость.

Глобальная роль коллоидов заключается в том, что они являются основными компонентами таких биологических образований как живые организмы. Все вещества организма человека представляют собой коллоидные системы.

Коллоиды поступают в организм в виде пищевых веществ и в процессе пищеварения превращаются в специфические, характерные для данного организма коллоиды. Из коллоидов, богатых белками, состоят кожа, мышцы, ногти, волосы, кровеносные сосуды и т.д. Можно сказать, что весь организм человека - это сложная коллоидная система.

Список источников информации

1. Официальный сайт Российской Академии Естествознания

2. Википедия, свободная энциклопедия

3. Ребиндер П. А Дисперсные системы

4. Сайт о химии «Химик»

5. Официальный сайт журнала «Химия и жизнь»

Размещено на Allbest.ru

...

Подобные документы

    Понятие о дисперсных системах. Разновидность дисперсных систем. Грубодисперсные системы с твердой дисперсной фазой. Значение коллоидной системы для биологии. Мицеллы как частицы дисперсной фазы золей. Последовательность в составлении формулы мицеллы.

    реферат , добавлен 15.11.2009

    Сущность и классификация дисперсных систем. Газы, жидкости и твердые вещества. Грубодисперсные системы (эмульсии, суспензии, аэрозоли), их применение в практической деятельности человека. Характеристика основных видов коллоидных систем: золей и гелей.

    презентация , добавлен 04.12.2010

    Понятие дисперсной системы, фазы и среды. Оптические свойства дисперсных систем и эффект Тиндаля. Молекулярно-кинетические свойства дисперсных систем. Теория броуновского движения и виды диффузии. Процесс осмоса и уравнение осмотического давления.

    реферат , добавлен 22.01.2009

    Понятие и суть дисперсности, ее характеристика. Шкала дисперсности. Удельная поверхность и ее степень дисперсности. Классификация дисперсных систем. Понятия: дисперсная фаза и дисперсионная среда. Методы получения дисперсных систем и их особенности.

    реферат , добавлен 22.01.2009

    Эмульсии. Условия их образования, классификация и свойства. Примеры эмульсий среди продуктов питания. Коагуляция дисперсной системы. Скорость коагуляции. Причины, вызывающие процесс самопроизвольной коагуляции. Адсорбционная хроматография. Теплоты нейтрал

    контрольная работа , добавлен 25.07.2008

    Основные признаки дисперсных систем, их классификация, свойства и методы получения, диализ (очистка) золей. Определение заряда коллоидной частицы, закономерности электролитной коагуляции, понятие адсорбции на границе раствор-газ, суть теории Ленгмюра.

    методичка , добавлен 14.12.2010

    Классификация дисперсных систем по размеру частиц дисперсной фазы и по агрегатным состояниям фаз. Условия для получения устойчивых эмульсий. Молекулярно-кинетические свойства золей, сравнение их с истинными растворами. Внешние признаки коагуляции.

    контрольная работа , добавлен 21.07.2011

    История учения о дисперсном состоянии веществ. Формирование дисперсной фазы в нефтяных системах. Надмолекулярные структуры и фазовые переходы в нефтяных системах. Коллоидно-дисперсные свойства нефтепродуктов - главный фактор выбора технологии переработки.

    реферат , добавлен 06.10.2011

    Частички газообразной, жидкой или твердой фазы в жидкости. Классификация различных дисперсных систем по размеру частиц дисперсной фазы, распределенной в дисперсионной среде. Удельная поверхность раздела фаз. Поверхностные процессы, адсорбция и адгезия.

    презентация , добавлен 30.04.2014

    Состав эмульсий и факторы, определяющие их стабильность. Крем - косметическое средство для ухода за кожей, его виды в зависимости от назначения. Компоненты гелей и пен, их образование и применение. Содержание и лечебные свойства мазей, их разновидности.

Дисперсные системы

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.
Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.
То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой . Она может состоять из нескольких веществ.
Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой . Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).
И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.
В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 9 видов таких систем.

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе.

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Классификация дисперсных систем и растворов


Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на:
1) эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;
2) суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон, которым питаются гиганты-киты, и т. д.;
3) аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.
Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлив, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.
Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.
Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.
Их подразделяют на золи (коллоидные растворы) и гели (студни).
1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал, белки, некоторые полимеры.
Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (Ш) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света.

Это явление называют эффектом Тиндаля . Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели , или студни, представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом .

Растворы

Раствором называют гомогенную систему, состоящую из двух и более веществ.
Растворы всегда однофазны, то есть представляют собой однородный газ, жидкость или твердое вещество. Это связано с тем, что одно из веществ распределено в массе другого в виде молекул, атомов или ионов (размер частиц менее 1 нм).
Растворы называют истинными , если требуется подчеркнуть их отличие от коллоидных растворов.
Растворителем считают то вещество, агрегатное состояние которого не изменяется при образовании раствора. Например, вода в водных растворах поваренной соли, сахара, углекислого газа. Если же раствор образовался при смешении газа с газом, жидкости с жидкостью и твердого вещества с твердым, растворителем считают тот компонент, которого больше в растворе. Так, воздух - это раствор кислорода, благородных газов, углекислого газа в азоте (растворитель). Столовый уксус, в котором содержится от 5 до 9% уксусной кислоты, представляет собой раствор этой кислоты в воде (растворитель - вода). Но в уксусной эссенции роль растворителя играет уксусная кислота, так как ее массовая доля составляет 70- 80%, следовательно, это раствор воды в уксусной кислоте.

При кристаллизации жидкого сплава серебра и золота можно получить твердые растворы разного состава.
Растворы подразделяют на:
молекулярные - это водные растворы неэлектролитов - органических веществ (спирта, глюкозы, сахарозы и т. д.);
молекулярно-ионные - это растворы слабых электролитов (азотистой, сероводородной кислот и др.);
ионные - это растворы сильных электролитов (щелочей, солей, кислот - NaOH, K 2 S0 4 , HN0 3 , НС1О 4).
Раньше существовали две точки зрения на природу растворения и растворов: физическая и химическая. Согласно первой растворы рассматривали как механические смеси, согласно второй - как нестойкие химические соединения частиц растворенного вещества с водой или другим растворителем. Последняя теория была высказана в 1887 г. Д. И. Менделеевым, который посвятил исследованию растворов более 40 лет. Современная химия рассматривает растворение как физико-химический процесс, а растворы как физико-химические системы.
Более точное определение раствора таково:
Раствор - гомогенная (однородная) система, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия.

Поведение и свойства растворов электролитов, как вы хорошо знаете, объясняет другая важнейшая теория химии - теория электролитической диссоциации, разработанная С. Аррениусом, развитая и дополненная учениками Д. И. Менделеева, и в первую очередь И. А. Каблуковым.

Вопросы для закрепления:
1. Что такое дисперсные системы?
2. При повреждении кожи (ранке) наблюдается свертывание крови - коагуляция золя. В чем сущность этого процесса? Почему это явление выполняет защитную функцию для организма? Как называют болезнь, при которой свертывание крови затруднено или не наблюдается?
3. Расскажите о значении различных дисперсных систем в быту.
4. Проследите эволюцию коллоидных систем в процессе развития жизни на Земле.