2. Какое расстояние на поверхности мембраны эритроцита проходит молекула фосфолипида за 1 секунду в результате латеральной диффузии? Коэффициент латеральной диффузии принять равным 10 –12 м2/с. Сравните с окружностью эритроцита диаметром 8 мкм.

3. При фазовом переходе мембранных фосфолипидов из жидкокристаллического состояния в гель толщина бислоя изменяется. Как при этом изменится электрическая емкость мембраны? Как изменится напряженность электрического поля в мембране?

4. Как изменится электрическая емкость мембраны (удельная) при ее переходе из жидкокристаллического состояния в гель, если известно

5. Рассчитайте время оседлой жизни и частоту перескоков из одного мембранного слоя в другой липидов мембран саркоплазматического ретикулума, если коэффициент латериальной диффузии D=12 мкм 2 /c, площадь, занимаемая одной молекулой фосфолипида А=0,7 нм 2 .

6. Рассчитайте коэффициент проницаемости для вещества, поток которого через мембрану моль/м . Концентрация вещества внутри клетки , а снаружи - моль/л.

7. Во сколько раз внутриклеточная концентрация ионов калия должна превышать наружную , чтобы потенциал покоя составлял 91мВ. Вычислите температуру клетки.

8. Рассчитайте коэффициент распределения К для вещества, если при толщине мембраны 10нм коэффициент диффузии 7,2*10 см , а коэффициент проницаемости 14см/с.

9. Разность концентраций молекул вещества на мембране некоторой клетки равна 48ммоль/л, коэффициент распределения между мембраной и окружающей средой 30, коэффициент диффузии 1,5*10 , плотность потока 25моль/м . Рассчитайте толщину этой мембраны.

10. Найдите коэффициент проницаемости плазматической мембраны Mycoplasma, для формамида, если при разнице концетраций, этого вещества внутри и снаружи мембраны, равной 0,5*10 , плотность потока его через мембрану равна 8*10 см/с.


17. Критический радиус липидной поры в мембране зависит от краевого натяжения поры , поверхностного натяжения мембраны  и мембранного потенциала . Выведите формулу для критического радиуса поры. Рассчитайте критический радиус поры при отсутствии мембранного потенциала. Принять краевое натяжение поры 10 – 11 Н, поверхностное натяжение липидного бислоя 0,3 мН/ м.

18. При фазовом переходе мембранных фосфолипидов из жидкокристаллического состояния в гель толщина бислоя изменяется. Как при этом изменится электрическая емкость мембраны? Как изменится напряженность электрического поля в мембране?
19. При фазовом переходе мембранных фосфолипидов из жидкокристаллического состояния в гель толщина бислоя изменяется. Как при этом изменится электрическая емкость мембраны? Как изменится напряженность электрического поля в мембране?

20. Как изменится электрическая емкость мембраны (удельная) при ее переходе из жидкокристаллического состояния в гель, если известно , что в жидкокристаллическом состоянии толщина гидрофобного слоя составляет 3,9 нм, а в состоянии геля – 4,7 нм. Диэлектрическая проницаемость липидов  2.

21. Осмотическое давление крови человека составляет 0,77МПа. Сколько молей соли NaCl должен содержать изотонический физиологический раствор в 200 мл воды при температуре 37 0 С?

22. При повторной регистрации спектра ЯМР одного и того же образца изменилась температура, линии спектра при этом стали более узкими. В какую сторону изменилась температура: понизилась или повысилась?

23. Найти длину электромагнитной волны, при которой возникает ЭПР в магнитном поле с магнитной индукцией 0,3Тл. Принять фактор Ланде равным двум.

24. По контуру радиусом 0,5м протекает ток. Найдите силу этого тока, если известно , что магнитный момент контура Б.

26. Определите мощность теплового излучения раздетого человека с S = 1 м 2 поверхности тела, если температура кожи t 1 =30 0 C, окружающей среды – t 2 =20 0 C. Коэффициент поглощения кожи k=0,9

27. Интенсивность излучения тела человека увеличились на 2,62 %. На сколько процентов возросла температура.

28. Определите длину волны , соответствующую максимуму спектральной плотности энергетической светимости тела человека, считая его серым телом. Температура кожи t=30 0 C.

29. Определите натуральный молярный показатель поглощения веществ, если при его концентрации в растворе с=0,03 моль/л оптическая плотность раствора составляет D=1. Длина кюветы l= 2 см.

30.Наблюдая под микроскопом движение эритроцитов в капилляре, можно измерить скорость течение крови (). Средняя скорость тока крови в аорте составляет . На основании этих данных определить, во сколько раз сумма всех функционирующих капилляров больше сечение аорты.

31. Рассчитайте предел разрешения z электронного микроскопа , если ускоряющее напряжение в нем U=100 кВ, апертурный угол u=10 -2 рад.

32. Вычислить вязкость крови при нормальном гематокрите (с=45%), если вязкость плазмы составляет

33. Вычислите максимальное минутный объем Q max крови, при котором течение крови в аорте остается ламинарным. Диаметр аорты d=2 cм, вязкость крови , плотность , критическое значение числа Рейнольдса Re кр =2000.

34. Скорость распространения пульсовой волны по артерии составляет v=10 м/c. Определите модуль упругости Е артерии, если толщина ее стенки h=0,7 мм, внутренний диаметр d=8 мм, плотность крови

35.Радиус аорты равен 1,0см; скорость течения крови в аорте составляет 30 см/с. Чему равен скорость течения крови в капиллярах, если суммарная площадь сечения капиллчров равна 2000 см 2 . (Диаметр каждого капилляра принять как , а число капилляров больше миллиона).

36. В медицине для определения скорости движения отдельных биологических структур (например, крови, клапанов сердца) используется эффект Доплера. Как связано изменение частоты ультразвукового сигнала при отражении от движущегося предмета с его скоростью?

37. К поршню горизонтально расположенного шприца приложена сила F=10 Н. Определите скорость v истечения лекарства из иглы шприца, если плотность лекарства , диаметр поршня d=7 мм, причем его площадь намного больше площади поперечного сечения иглы.

38. С какой скоростью v всплывает пузырек воздуха диаметром d=4 мм в сосуде, наполненном глицерином? Кинематическая вязкость глицерина , его плотность намного больше плотности воздуха.

39. При некоторых заболеваниях критическое число Рейнольдса в сосудах становится равным 1160. Найдите скорость движения крови, при которой возможен переход ламинарного течения в турбулентное в сосуде диаметром 2мм.

40.Уровень громкости звука равен 120 фон, а тихого разговора – на том же расстоянии – 41. фон. Определить отношение интенсивностей.

42. Интенсивности звука 10-2 Вт/м2. Найти звуковое давление , если акустическое сопротивление среды (воздуха) 420 кг/м2с.

43. Определить амплитудное значение звукового давления для чистого тона частотой 1000 Гц, при котором может наступить разрыв барабанной перепонки, если разрыв наступает при уровне громкости L E = 160 фон. (Ответ выразить в паскалях и в атм.)

44. Электронагреватель в установке для термической обработки лекарственного сырья за 10 мин испаряет 1 л воды, вязтой при температуре 20 0 С. Определите длину нихромовой проволоки сечением 0,5 мм 2 , учитывая, что установка питается напряжением 120 В и ее КПД равен 80%?

45. Интенсивность света, прошедшего через раствор аспирина в непоглощающем растворителе, уменьшается за счет поглощения в три раза. Концентрация молекул аспирин n 0 =10 20 м -3 . Путь света в растворе =150 мм. Определите эффективное сечение поглощения аспирина.

46. Определите разность фаз в пульсовой волне между двумя точками артерии, расположенными на расстоянии друг от друга , считая скорость пульсовой волны равной v=10 м/c, колебания сердца – гармоническими с частотой =1,2 Гц.

49. Для нагревания мышечной ткани на плоское электроды подается напряжение c амплитудой U 0 =250 В и частотой =10 6 Гц. Активное сопротивление этого участка цепи R=10 3 Ом; емкость С= Ф. Определите количество тепла, выделившееся в объеме ткани между электродами за период колебаний Т и за время процедуры t=10 мин.

50. Ионофорез применяется для введения лекарственных веществ в тело человека. Определите количество однократно ионизированных ионов лекарственного вещества, введенное больному за время t= 10 мин при плотности тока 0,05 мА/см 2 с электрода площадью S=5 см 2

ВОПРОСЫ ЭКЗАМЕНА


  1. Биологические мембраны. Виды биологических мембран и их функции.

  2. Виды мембранных липидов и их свойства. Бислойные липидные структуры.

  3. Холестерин. Динамика липидов в мембране. Фазовые переходы в мембране.

  4. Мембранные белки. Виды и функции мембранных белков.

  5. Структура биологических мембран.

  6. Искусственные мембраны. Липосомы.

  7. Методы исследования структуры мембран.

  8. Капиллярные явления, их значения в биологии и медицине. Газовая эмболия.

  9. Транспорт веществ через биологические мембраны.Способы проникновения веществ в клетку.

  10. Виды транспорта. Простая диффузия.

  11. Транспорт неэлектролитов через биологические мембраны.

  12. Основные механизмы пассивного транспорта.

  13. Транспорт ионов. Ионный транспорт веществ в каналах.

  14. Механизмы проницаемости биологических мембран. Строение и функции ионных каналов и переносчиков. Механизмы электрогенеза.

  15. Активный транспорт через биологические мембраны.

  16. Молекулярные механизмы электрохимических потенциалов мембран и распространение нервного импульса вдоль возбудимого волокна.

  17. Понятие электровозбудимости. Потенциалы покоя.

  18. Методы измерения мембранного потенциала. Микроэлектродная техника.

  19. Потенциал действия. Механизм генерации и распространения потенциала действия.

  20. Методы изучения молекулярных механизмов электромеханических потенциалов мембран.

  21. Распространение нервного импульса вдоль возбудимого волокна.

  22. Датчики медико-биологической информации. Типы датчиков.

  23. Назначение и классификация датчиков , характеристики.

  24. Термоэлектрические явления в металлах и полупроводниках.
    Градуировка термодатчиков и определение температуры вещества.

  25. Электроды для съема биоэлектрического сигнала.

  26. Ионные токи в модели Ходжкина – Хаксли.

  27. Ионные каналы в клеточных мембран. Структура ионного канала.

  28. Механизм генерации потенциала действия кардиомиоцита.

  29. Мембранные потенциалы. Потенциал действия сердечной клетки.

  30. Физические основы электрокардиографии. Устройство, принцип работы электрокардиографа..Основные подходы к регистрации ЭКГ.

  31. Регистрация ЭКГ и принципы анализа.

  32. Электроэнцефалография. Основные ритмы ЭЭГ. Их функциональное значение.

  33. Регистрация ЭЭГ и принципы анализа. Функциональные пробы.

  34. Основные типы электрической активности пирамидных нейронов.
36. Закономерности поглощения света биологическими системами.

37. Энергетические уровни молекул (электронная, колебательная и вращательная энергия молекул).

38.Электронные переходы при поглощении света.

39. Спектры поглощения молекул некоторых биологически важных соединений.

40. Методы исследования фотобиологических процессов с помощью спектров.

41.Устройство и принцип работы спектрофотометров.

42. Изучение спектрофотометрических методов исследования для определения концентрации веществ в биологических жидкостях.

43. Люминесценция биологических систем.

44. Люминесценция. Различные виды люминесценции.

45.Фотолюминесценция. Правило Стокса.

46. Квантовый выход флуоресценции. Триплетный уровень и фосфоресценция.

47. Фотолюминесцентный качественный и количественный анализ биологических объектов.

48. Люминесцентная микроскопия. Хемилюминесценция, механизм генерации хемилюминесценции

49.Первичные стадии фотобиологических процессов.

50. Спектры фотобиологического действия.

51.Изучение продуктов первичных фотобиохимических реакций.
52. Свободнорадикальное окисление.Первичные фотохимические реакции белков.

53.Фотохимические превращение ДНК.

54. Особенности действия высокоинтенсивного лазерного излучения на ДНК.

55. Фотореактивация и фотозащита.

56.Действие ультрафиолетового света на биологические мембраны.

57. Фотосенсибилизированные фотобиологические процессы.

58. Исследование биологических объектов в микроскопии.

59. Специальные приемы микроскопии биологических объектов

60. Оптическая система микроскопа, построение изображения объекта.

61. Формула увеличения оптического микроскопа.

62. Биофизика мышечного сокращения. Модель скользящих нитей.

63. Биомеханика мышцы. Уравнение Хилла.

64. Мощность одиночного сокращения. Моделирование мышечного сокращения.

65. Электромеханическое сопряжение

66. Кровеносная система (артерии, вены). Механизм кровообращения

67.Движение крови в крупных сосудах.

68.Организация потока крови в микрососудах.

69. Движение форменных элементов крови в капиллярах.

70. Факторы, определяющие реологические свойства крови.

71. Формы ориентации эритроцитов в капиллярах.

72. Гемодинамические закономерности движения крови по сосудам.

73. Общие физико-математические закономерности движения крови по кровеносному руслу.

74. Реография различных органов и тканей. Методы исследования кровообращения.

75. Методы регистрации и принципы анализа реографической кривой. Интегральная и регионарная реография.

76. Способы косвенной регистрации ударного и минутного выброса. Компьютерная интегральная реография.

77. Физические основы взаимодействия звука и биологических тканей.

78. Классификация медицинских приборов и аппаратов.

79.Формы энергии, которые преобразуются в измерительном преобразователе.

80. Медицинские приборы терапевтического назначения.

81. Терапевтическая электронно-медицинская аппаратура.

82. Методы высокочастотной терапии (ВЧ,УВЧ,СВЧ и др.) и их биофизическое воздействие.

83. Устройство аппарата УВЧ-терапии и его принцип работы.

84. Терапевтическая техника, основанная на применении постоянного тока

85. Устройство аппарата гальванизации и его принцип работы. Физические основы гальванизации

86. Фотоэлектрические преобразователи.

87. Основные технические средства медицинской интроскопии.

88. Конструкции датчиков и их основные характеристики.

89.Приборы для измерения функции внешнего дыхания

90. Регистрация движений грудной клетки при дыхательных движениях. Пневмография, спирометрия, спирография.

Перечень практических навыков


  1. проводить регистрацию ЭЭГ., РГ

  2. проводить регистрацию ЭКГ в стандартных отведениях;

  • уметь объяснить генез ЭКГ феноменов и методы их выявления.

  • научиться формировать электрокардиографический диагноз.

  • производить регистрацию физических параметров ,

  • обрабатывать результаты измерений с использованием вычислительных средств;

  • измерять концентрацию веществ с использованием фотометрических приборов.

  • решать задачу оптимального сопряжения биообъекта и технических средств в медико-биологических исследованиях;

  • правильно подбирать технические средства при решении медицинских задач

Активный транспорт - перенос молекул и ионов, который происходит с затратой химической энергии в направлении от меньших значений величин к большим .

При этом нейтральные молекулы переносятся в область большей концентрации, а ионы переносятся против сил, действующих на них со стороны электрического поля. Таким образом, активным транспортом осуществляется перенос веществ в направлении, противоположном транспорту, который должен был бы происходить под действием градиентов (прежде всего концентрационного и электрического). Энергия получается за счет гидролиза молекул особого химического соединения - аденозинтрифосфорной кислоты (АТФ). Экспериментально установлено, что энергии распада одной молекулы АТФ достаточно для выведения наружу трех ионов натрия и введения внутрь клетки двух ионов калия. Схема активного транспорта представлена на рис.13.

Захватив одним активным центром ион калия из наружной среды, а другим ион натрия - из внутренней, система, потребляя АТФ, поворачивается внутри мембраны на 180°. Ион натрия оказывается вне клетки и там отделяется, а ион калия попадает внутрь и тоже освобождается, после чего молекула белка принимает исходное положение, и все начинается сначала.

За счет активного транспорта клетка поддерживает внутри себя высокую концентрацию калия и низкую концентрацию натрия. При этом ионы могут перемещаться против градиента их концентрации (аналогия с газом: перекачивание газа из сосуда с низким давлением в сосуд с высоким давлением).

Рис.13. Схема активного транспорта

Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., поддерживающие жизненные процессы, т. е., с точки зрения термодинамики, активный перенос удерживает организм в неравновесном состоянии, поддерживает жизнь.

Существование активного транспорта веществ через биологические мембраны впервые было доказано в опытах Уссинга (1949 г.) на примере переноса ионов натрия через кожу лягушки (рис.14).

Рис. 14 . Схема опыта Уссинга (А - амперметр, V - вольтметр, Б - батарейка, П - потенциометр)

Экспериментальная камера Уссинга, заполненная нормальным раствором Рингера, была разделена на две части свежеизолированной кожей лягушки. На рис.14 слева - наружная мукозная поверхность кожи, справа - внутренняя серозная. Наблюдались потоки ионов натрия через кожу лягушки: слева направо от наружной к внутренней поверхности и справа налево - от внутренней к наружной поверхности.

На коже лягушки, разделяющей раствор Рингера, возникала разность потенциалов, причем внутренняя сторона кожи имела положительный потенциал по отношению к наружной. В установке имелся блок компенсации напряжения, с помощью которого устанавливалась разность потенциалов на коже лягушки, равная нулю, что контролировалось вольтметром. Кроме того, поддерживалась одинаковая концентрация ионов с наружной и внутренней стороны. При этих условиях, если бы перенос ионов натрия через кожу лягушки определялся только пассивным транспортом, то потоки ионов натрия должны были бы быть равны друг другу, а ток в цепи отсутствовать.

Однако было обнаружено, что в условиях опыта (отсутствие градиентов электрического потенциала и концентрации) через кожу лягушки течет электрический ток, следовательно, происходит односторонний перенос заряженных частиц. Установлено, что ток через кожу течет от внешней среды к внутренней. Методом меченых атомов было показано, что поток натрия внутрь больше, чем поток наружу.

Для этого в левый раствор экспериментальной камеры были включены радиоактивные изотопы Na 22 , а в правый - Na 24 . Изотоп Na 22 распадается с излучением жестких γ-квантов. Распад Na 24 сопровождается мягким β-излучением. Регистрация γ - и β - излучений показала, что поток Na 22 больше потока Na 24 . Эти экспериментальные данные неопровержимо свидетельствовали о том, что перенос ионов натрия через кожу лягушки не подчиняется уравнению пассивного транспорта. Следовательно, имеет место активный перенос. Дальнейшие опыты показали, что истощение запасов АТФ в коже лягушки приводит к полной остановке однонаправленного потока ионов натрия.

3. Цель деятельности студентов на занятии:

Студент должен знать:

1. Роль мембраны в функционировании клетки.

2. Структуру, строение и модели мембран.

3. Функции мембраны.

4. Физические свойства мембран.

5. Уравнение Фика.

6. Уравнение Нернста-Планка.

7. Виды пассивного транспорта частиц через мембрану.

8. Активный транспорт частиц через мембрану.

Студент должен уметь:

1. Объяснять строение мембраны.

2. Объяснять искусственные модели мембран.

3. Объяснять механизм пассивного транспорта через мембрану.

4. Объяснить механизм активного транспорта через мембрану.

5. Решать ситуационные задачи.

1. Строение биологических мембран.

2. Жидко-мозаичная модель мембраны.

3. Искусственные модели мембран.

4. Основные функции клеточной мембраны.

5. Физические свойства мембран.

6. Перенос молекул (атомов) через мембрану. Уравнение Фика.

7. Перенос ионов через мембраны. Уравнение Нернста-Планка.

8. Разновидности пассивного переноса молекул и ионов через мембраны.

9. Активный транспорт. Опыт Уссинга.

10. Решение ситуационных задач.

5.Перечень вопросов для проверки исходного уровня знаний:

1. Что представляют собой биологические мембраны?

2. Что является основой мембраны?

3. Для чего используют физико-химические (искусственные) модели мембраны?

4. Опишите жидко-мозаичную модель мембраны.

5. Что такое латеральная диффузия? флин-флоп переход?

6. Какие основные функции выполняет мембрана и в чем они заключаются?

7. Запишите уравнения Фика и Нернста-Планка. Какие процессы они описывают?

8. Что называется подвижностью?

9. Что такое пассивный транспорт? Какие разновидности пассивного транспорта существуют?

10. Что такое активный транспорт? За счет чего он осуществляется?

11. Какое значение имеет активный транспорт веществ?

12. Объясните явления переноса вещества и заряда через мембрану.

13. Что будет, если клетку поместить в чистую воду?

6 . Перечень вопросов для проверки конечного уровня знаний:

1. Опишите модельные липидные мембраны. Где они используются?

2. Охарактеризуйте физические свойства мембран.

3. При фазовом переходе мембранных фосфолипидов из жидкокристаллического состояния в гель толщина бислоя изменяется. Как при этом изменится электрическая емкость мембраны? Как изменится напряженность электрического поля в мембране?

4. Примените уравнение Фика к биологической мембране.

5. Запишите и объясните уравнение Нернста-Планка.

6. Покажите, что уравнение Нернста-Планка сводится к уравнению Фика для диффузии незаряженных частиц.

7. Опишите виды пассивного транспорта.

8. Проницаемость клеточных мембран для молекул воды приблизительно в 10 раз выше, чем для ионов. Что произойдет, если в изотоническом водном растворе, в котором находятся эритроциты, увеличить концентрацию осмотически активного вещества (например, ионов Na+)?

9. Опишите опыт Уссинга.

7.Решите задачи:

1. Какое расстояние на поверхности мембраны эритроцита проходит молекула фосфолипида за 1 секунду в результате латеральной диффузии? Коэффициент латеральной диффузии принять равным 10 -12 м 2 /с. Сравните с окружностью эритроцита диаметром 8 мкм.

2. Удельная электрическая емкость мембраны аксона, измеренная внутриклеточным микроэлектродом, оказалась равной 0,5 мкФ/см 2 . По формуле плоского конденсатора оцените толщину гидрофобного слоя мембраны с диэлектрической проницаемостью 2.

3. Толщину двойного слоя на границе мембрана - электролит характеризует дебаевский радиус δ . Определите δ для случая, когда в растворе электролита, окружающем мембрану, есть только ионы калия с концентрацией: 1) 10 -5 моль/л; 2) 10 -2 моль/л.

4. Найдите дебаевский радиус экранирования, создаваемого присутствующими в растворе ионами кальция с концентрацией 10 -5 моль/л и натрия с концентрацией 10 -4 моль/л. Как изменится δ, если в растворе будут только ионы кальция в концентрации 10 -4 моль/л?

5. Критический радиус липидной поры в мембране зависит от краевого натяжения поры, поверхностного натяжения мембраны и мембранного потенциала. Выведите формулу для критического радиуса поры. Рассчитайте критический радиус поры при отсутствии мембранного потенциала. Принять краевое натяжение поры 10 -11 Н, поверхностное натяжение липидного бислоя 0,3 мН / м.

6. Молярная концентрация кислорода в атмосфере с а = 9 моль/м. Кислород диффундирует с поверхности тела насекомых внутрь через трубки, называемые трахеями. Длина средней трахеи равна приблизительно h = 2 мм, а площадь ее поперечного сечения S = 2∙10 -9 м 2 . Считая, что концентрация кислорода внутри насекомого (с ) в два раза меньше, чем концентрация кислорода в атмосфере, вычислите поток диффузии через трахею. Коэффициент диффузии кислорода D = 10 -5 м 2 /с.

7. Двойной фосфолипидный слой уподобляет биологическую мембрану конденсатору. Вещество мембраны представляет собой диэлектрик с диэлектрической проницаемостью ε = 4. Разность потенциалов между поверхностями мембраны U = 0,2 В при толщине d = 10 нм. Рассчитайте электроемкость 1 мм 2 мембраны и напряженность электрического поля в ней.

8. Площадь поверхности клетки приблизительно равна S =5∙10 -10 м 2 . Удельная электроемкость мембраны (емкость единицы поверхности) составляет С уд = 10 -2 Ф/м 2 . При этом межклеточный потенциал равен U = 70 мВ. Определите: а) величину заряда на поверхности мембраны; б) количество одновалентных ионов, образующих этот заряд.

9. Фермент Na + - К + - АТФаза в плазматической мембране эритроцита совершил шесть циклов. Какое количество ионов натрия и калия при этом было активно транспортировано? Сколько энергии было при этом израсходовано, если гидролиз одного моля АТФ сопровождается освобождением 33,6 кДж? Эффективность процесса энергетического сопряжения считать 100 %.

8. Самостоятельная работа студентов:

По учебнику Антонова В.Ф.и др. (§ 15.4.) ознакомтесь с физическими методами определения толщины мембраны.

9. Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 50 мин.

3. Решение ситуационных задач – 40 мин.

4. Текущий контроль знаний – 30 мин

5. Подведение итогов занятия – 10 мин.

10. Перечень учебной литературы к занятию:

1.Ремизов А.Н., Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика, М., «Дрофа», 2008, §§ 11.1, 11.2, 11.5, 11.6.

Эритроци́ты также известные под названием кра́сные кровяны́е тельца́ , -клетки крови человека. Эритроциты - высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO 2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2-3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем - комплекс протопорфирина IX с ионом двухвалентного железа, кислород обратимо кординируется с ионом Fe 2+ гемоглобина, образуя оксигемоглобин HbO 2:

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование - стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты - промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся. Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду.Плазмолемму пронизывают трансмембранные белки - гликофорины, которые, благодаря большому количеству остатков сиаловой кислоты, ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеидной природы - агглютиногены - факторы систем групп крови(на данный момент изучено более 15 систем групп крови: AB0, резус фактор, антиген Даффи (англ.)русск., антиген Келл, антиген Кидд (англ.)русск.), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.



Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У человека диаметр эритроцита составляет 7,2-7,5 мкм, толщина - 2 мкм, объём - 76-110 мкм³ Мембрана эритроцита представляет собой пластичную молекулярную мозаику, состоящую из белков, липопротеинов и гликопротеинов и, возможно, чисто липидных участков. Толщина ее составляет около 10 нм, она примерно в миллион раз более проницаема для анионов, чем для катионов. Перенос веществ через мембрану совершается в зависимости от их химических свойств разными способами: гидродинамически (путем диффузии), когда вещества, как в растворе, проходят через заполненные водой мембранные поры, или, если вещества растворимы в жирах, путем проникновения через липидные участки. Некоторые вещества способны вступать в легко обратимые связи со встроенными в мембрану молекулами - переносчиками, и в дальнейшем они или пассивно, или в результате так называемого активного транспорта проходят через мембрану.

45.Образование эритроцитов. Факторы, участвующие в образовании эритроцитов и гемоглобина, регуляция эритропоэза. СОЭ, ключевые факторы, определяющие величину СОЭ.

главным стимулом развития эритроцитов яв-ся гипоксия. Гипоксия – снижение сод-ия кислорода в тканях. Дефицит О2 способствует обр-ию эритропоэтинов в эпителие почек. Эритропоэтины поступают в кровь, затем в ККМ, где стимулируют диф-ку и развитие стволовых клеток в эритроциты. Регуляцией эритропоэза зан-ся витамин в12 и фолиевая кислота. Эти витамины необходимы для созревания и развития ядра клетки. Витамин в12 связывается в желудке с белком переносчиком и оьразуется транскобаламин и перенсится в 12 п.к.. Там он подвергается гидролизу, а вит. В12 с внутренним фактором кроветворения пост-ет в подвздошную кишку. В этом отделе в присутствий Са2+ связывается с мембраной энтероцита. Попадает вв кровь, и транспортируется к к-мишеням. Витамин В12 уч-ет в синтезе ДНК в эритробластах. Витамин в6 - кофермент, уч-ий в обр-ий гема в эритробластах. Витамин С – способствует метаболизму фолиевой кислоты в эритробластах. СОЭ – неспециический показатель на наличие болезни, т.к. повышается уровень белков плазмы крови и скорость оседания эритроцитов повышается. В норме от 5 до 10 мм/час.

Изучение белков, содержащихся в плазматической мембране эритроцитов, позволило сформулировать новые представления о строении мембран. Возникло, в частности, предположение о том, что по крайней мере некоторые мембраны имеют «скелет». В мембране эритроцита человека содержится пять главных белков и большое число минорных. Большинство мембранных белков-гликопротеины. К интегральным белкам в мембране эритроцита относится гликофорин («переносчик сахара»). Его молекулярная масса составляет 30000; гликофорин содержит 130 аминокислотных остатков и множество остатков сахаров, на долю которых приходится около 60% всей молекулы. На одном из концов полипептидной цепи располагается гидрофильная голова сложного строения, включающая в себя до 15 олигосахаридных цепей, каждая из которых состоит приблизительно из 10 остатков сахаров. На другом конце полипептидной цепи гликофорина находится большое число остатков глутаминовой и аспарагиновой кислот (рис. 12-20), которые при pH 7,0 несут отрицательный заряд. В середине молекулы, между двумя гидрофильными концами, располагается участок полипептидной цепи, содержащий около 30 гидрофобных аминокислотных остатков. Богатый сахарами конец молекулы гликофорина локализуется на внешней поверхности мембраны эритроцита, выступая из нее в виде кустика. Считают, что расположенный в середине молекулы гликофорина гидрофобный участок проходит сквозь липидный бислой, а полярный конец с отрицательно заряженными остатками аминокислот погружен в цитозоль. Богатая сахарами голова гликофорина содержит антигенные детерминанты, определяющие группу крови (А, В или О). Кроме того, на ней имеются участки, связывающие некоторые патогенные вирусы.

На долю другого важного белка мембраны эритроцитов - спектрино - приходится до 20% общего количества белков в мембране.

Рис. 12-20. Молекула гликофорина в мембране эритроцита. Выступающие из мембраны разветвленные углеводные цепи несут специфические участки, определяющие группу крови, а также участки, ответственные за связывание некоторых вирусов.

Этот периферический белок расположен на внутренней поверхности мембраны; он легко поддается экстракции. Молекула спектрина состоит из четырех полипептидных цепей, суммарная молекулярная масса которых составляет около 1 млн.; эти цепи образуют длинные гибкие стержни длиной 100-200 нм. Связываясь с определенными белками и липидами на внутренней поверхности мембраны эритроцита, молекулы спектрина формируют гибкую решетку, которая, по-видимому, играет роль скелета мембраны. Со спектрином связываются также микрофиламенты актина, и весьма вероятно, что именно они соединяют стержни спектрина друг с другом. Таким образом, можно говорить о том, что мембрана эритроцита имеет скелет, или каркас, на котором крепятся специфические липиды и мембранные белки (рис. 12-21).

Плазматические мембраны других клеток имеют более сложное строение.

Рис. 12-21. Схематическое изображение участка эритроцитарной мембраны. На схеме показаны олигосахаридные «антенны», образованные мембранными гликопротеинами и гликолипидами, боковые олигосахаридные цепи гликофорина, а также присоединенная к внутренней поверхности мембраны скелетная основа из молекул спектрина, связанных между собой короткими нитями актина.

На внешней поверхности клеток во многих плотных тканях присутствует еще один важный гликопротеин - фибронектин (разд. 11.12), обладающий высокой адгезивном способностью и, возможно, обеспечивающий слипание однотипных клеток друг с другом.

1

1 ГБОУ ВПО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России»

1. Нормальная физиология: учебник / Под ред. А.В. Завьялова, В.М. Смирнова, 2011. – 368 с.

2. Нормальная физиология: учебник [Н.А. Агаджанян, Н.А. Барабаш, А.Ф. Белов и др.] / Под ред. проф. В.М. Смирнова. – 3-е изд. – М.: Издательский центр «Академия», 2010. – 480 с.

3. Физиология человека / В.Ф. Киричук, О.Н. Антипова, Н.Е. Бабиченко, В.М. Головченко, Е.В. Понукалина, И.В. Смышлеева, Л.К. Токаева / Под ред В.Ф. Киричука. – 2–е изд. – Саратов: Изд-во Саратовского медицинского университета, 2009. – 343 с.

4. Физиология и патофизиология красной крови: учеб. пособие / Н.П. Чеснокова, В.В. Моррисон, Е.В. Понукалина, Т.А.Невважай; под общ. ред. проф. Н.П. Чесноковой. – Саратов: Изд-во Сарат. мед. ун-та, 2013. – 80 с.

5. Гематологический атлас / С. Луговская, М.Е. Почтар. 3-е издание. – Москва – Тверь: ООО «Изд-во Триада», 2011. – С. 3–23.

6. Клеточные и молекулярные механизмы регуляции системы гемостаза в норме ипатологии: монография / Б.И. Кузник. – Чита: Экспресс-издательство, 2010. – С. 261–368.

7. Гематология / Под ред проф. О.А. Рукавицына, А.Д. Павлова, Е.Ф. Морщаковой и др. – СПб.: ООО «Д.П.», 2007. – С. 29–34.

Особенности структурной организации мембраны эритроцитов

Эритроцит окружен плазматической мембраной, структура которой хорошо изучена, идентична таковой в других клетках. Цитоплазматическая мембрана эритроцитов включает бислой фосфолипидов, в то время как белки или «плавают» на поверхности мембран, или пронизывают липиды, обеспечивая прочность и вязкость мембран. Площадь мембраны одного эритроцита составляет около 140 мкм2.

На долю белков приходится примерно 49 %, липидов - 44 %, углеводов -7 %. Углеводы химически связаны либо с белками, либо с липидами и образуют соответственно гликопротеиды и гликолипиды.

Важнейшими компонентами мембраны эритроцитов являются липиды, включающие до 48 % холестерина, 17-28 % - фосфотидилхолина, 13-25 % - сфингомиелина и ряд других фосфолипидов.

Фосфотидилхолин мембраны эритроцитов несет нейтральный заряд, практически не вступает в реакции взаимодействия с положительно заряженными каналами Са2+, обеспечивая тем самым атромбогенность эритроцитов. Благодаря таким свойствам, как текучесть, пластичность, эритроциты способны проходить через капилляры диаметром ~ 3 мкм.

Белки мембраны эритроцита делят на периферические и интегральные. К периферическим белкам относят спектрин, анкирин, белок 4.1., белок р55, адуцин и др. В группу интегральных белков входит фракция 3, а также гликофорины А, В, С, О, Е. Анкирин образует соединение с р-спектрином. В составе эритроцитов обнаружено около 340 мембранных и 250 растворимых белков.

Пластичность эритроцитов связана с фосфорилированием мембранных белков, особенно белков полосы 4.1.

Белок фракции 4.2. - паллидин обеспечивает связывание спектрин-актин-анкиринового комплекса с фракцией 3, относится к группе трансглутаминазных протеинов.

К числу сократительных белков мембраны эритроцитов относятся р-актин, тропомодулин, строматин и тропомиозин.

Гликофорины - интегральные белки мембраны эритроцитов, определяющие отрицательный заряд, способствующий отталкиванию эритроцитов друг от друг и от эндотелия сосуда.

Протеин 3 - основной белок актинов, регулирующий дефосфорилируемость эритроцита.

Как указывалось выше, мембрана эритроцита представляет собой сложный комплекс, включающий определенным образом организованные липиды, белки и углеводы, которые формируют наружный, средний и внутренний слои эритроцитарной мембраны.

Касаясь пространственного расположения различных химических компонентов эритроцитарной мембраны, следует отметить, что наружный слой образован гликопротеидами с разветвленными комплексами олигосахаридов, которые являются концевыми отделами групповых антигенов крови. Липидным компонентом наружного слоя являются фосфатидилхолин, сфингомиелин и неэстерифицированный холестерин. Липиды наружного слоя мембраны эритроцита играют важную роль в обеспечении постоянства структуры мембраны, избирательности ее проницаемости для различных субстратов и ионов. Вместе с фосфолипидами холестерин регулирует активность мембранно-связанных ферментов путем изменения вязкости мембраны, а также участвует в модификации вторичной структуры ферментов. Молярное отношение холестерин / фосфолипиды в мембранах клеток у человека и многих млекопитающих равно 0,9. Изменение этого соотношения в сторону увеличения наблюдается в пожилом возрасте, а также при некоторых заболеваниях, связанных с нарушением холестеринового обмена.

Снижение текучести мембраны эритроцита и изменение ее свойств отмечается также и при увеличении содержания сфингомиелина,

Средний бислой мембраны эритроцита представлен гидрофобными «хвостами» полярных липидов. Липидный бислой обладает выраженной текучестью, которая обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами гидрофобной части бислоя. Интегральные белки, к которым относятся ферменты, рецепторы, транспортные белки, обладают активностью только в том случае, если находятся в гидрофобной части бислоя, где они приобретают необходимую для активности пространственную конфигурацию. Поэтому любые изменения в составе липидов эритроцитарной мембраны сопровождаются изменением ее текучести и нарушением работы интегральных белков.

Внутренний слой мембраны эритроцита, обращенный к цитоплазме, состоит из белков спектрина и актина. Спектрин является специфическим белком эритроцитов, его гибкие вытянутые молекулы, связываясь с микрофиламентами актина и липидами внутренней поверхности мембраны, формируют своеобразный скелет эритроцита. Небольшой процент липидов во внутреннем слое мембраны эритроцита представлен фосфатидилэтаноламином и фосфатидилсерином. От наличия спектрина зависит подвижность белков, удерживающих двойной бисой липидов.

Одним из важных гликопротеинов является гликофорин, содержащийся как на внешней, так и на внутренней поверхностях мембран эритроцитов. Гликофорин в своем составе содержит большое количество сиаловой кислоты и обладает значительным отрицательным зарядом. В мембране он располагается неравномерно, образует выступающие из мембраны участки, которые являются носителями иммунологических детерминант.

Строение и состояние эритроцитарной мембраны, низкая вязкость нормального гемоглобина обеспечивают значительные пластические свойства эритроцитам, благодаря которым эритроцит легко проходит по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка, и может принимать самые разнообразные формы. Другим периферическим мембранным белком эритроцитов является анкирин, образующий соединение с молекулой Р-спектрина.

Функции эритроцитарной мембраны

Мембрана эритроцитов обеспечивает регуляцию электролитного баланса клетки за счет активного энергозависимого транспорта электролитов или пассивной диффузии соединений по осмотическому градиенту.

В мембране эритроцитов имеются ионно-проницаемые каналы для катионов Na+, K+, для O2, CO2, Cl- HCO3-.

Транспорт электролитов через эритроцитарную мембрану и поддержание его мембранного потенциала обеспечивается энергозависимыми Na+, K+, Ca2+ - АТФ-азными системами.

Мембрана эритроцитов хорошо проницаема для воды при участии так называемых белковых и липидных путей, а также анионов, газообразных соединений и плохо проницаема для одновалентных катионов калия и натрия.

Белковый путь трансмембранного переноса воды обеспечивается при участии пронизывающего мембрану эритроцитов белка «полосы 3», а также гликофорина.

Молекулярная природа липидного пути переноса воды через эритроцитарную мембрану практически не изучена. Прохождение молекул небольших гидрофильных неэлектролитов через эритроцитарную мембрану осуществляется также, как и перенос воды, за счет белкового и липидного путей. Перенос мочевины и глицерина через мембрану эритроцита обеспечивается за счет ферментативных реакций.

Характерной особенностью мембраны эритроцитов является наличие мощной системы активного транспорта для одновалентных анионов (хлора и фтора), и двухвалентных анионов (SO42-, PO42-) за счет белков - переносчиков.

Перенос органических анионов через эритроцитарную мембрану обеспечивается, как и транспорт неорганических анионов, при участии белка «полосы 3».

Эритроцитарная мембрана обеспечивает активный транспорт глюкозы, кинетика которого обеспечивается зависимостью Михаэлиса-Ментен. Важная роль в транспорте глюкозы через эритроцитарную мембрану отводится полипептиду полосы 4,5 (белки с ММ 55 кД - возможные продукты распада полипептида полосы 3). Высказывается предположение о наличии специфического липидного окружения у белков - переносчиков сахаров в эритроцитарной мембране.

Неравномерное распределение моновалентных катионов в системе эритроцит - плазма крови поддерживается при участии энергозависимой Na+-помпы, осуществляющей трансмембранный обмен ионов Na+ эритроцитов на ионы К+ плазмы крови в соотношении 3:2. Кроме указанного трансмембранного обмена Na+/K+, Na+ помпа осуществляет еще, по крайней мере, четыре транспортных процесса: Na+→ Na+ обмен; K+→K+обмен; одновалентный вход ионов Na+, сопряженный с выходом К+.

Молекулярной основой Na+ помпы является фермент Na+, K+ -АТФ-аза - интегральный белок, прочно связанный с мембранными липидами, состоящий из 2х полипептидных субъединиц с ММ 80-100кД.

Транспортная система имеет 3 центра, связывающих ионов Na+, локализованных на цитоплазматической стороне мембраны. С наружной стороны мембраны на транспортной системе имеется 2 центра связывания ионов К+. Важная роль в поддержании высокой активности фермента отводится мембранным фосфолипидам.

Функционирование Са2+-помпы обеспечивается нуклеотидами, а также макроэргическими соединениями, преимущественно АТФ, ЦТФ, ГТФ, в меньшей степени ГТФ и ЦТФ.

Как в случае Nа+-помпы, функционирование Са2+помпы в эритроцитах связано с проявлениями активности Са2+, Mg2+ -АТФ-азы. В мембране одного эритроцита обнаруживается около 700 молекул Са2+, Mg2+ -АТФ-азы.

Наряду с барьерной и транспортной функциями, мембрана эритроцитов выполняет рецепторную функцию.

Экспериментально доказано наличие на мембране эритроцитов рецепторов к инсулину, эндотелину, церулоплазмину, а2-макроглобулину, α- и β-адренорецепторов. На поверхности эритроцитов находятся рецепторы к фибриногену, обладающие достаточно высокой специфичностью. Эритроциты также несут на мембране рецепторы к гистамину, ТхА2, простациклину.

В мембране эритроцитов обнаруживаются рецепторы для катехоламинов, снижающих подвижность жирных кислот липидов мембран эритроцитов, а также осмотическую устойчивость эритроцитов.

Установлена перестройка структуры мембраны эритроцитов под влиянием низких концентраций инсулина, гормона роста человека, простагландинов группы Е и Е2.

В мембранах эритроцитов высока и ц - АМФ активность. При увеличении концентраций в эритроцитах ц-АМФ (до 10-6 М) усиливаются процессы фосфорилирования белков, что приводит в свою очередь к изменению степени фосфорилированности и проницаемости мембран эритроцитов для ионов Са2+.

Эритроцитарная мембрана содержит изоантигены различных систем иммунологических реакций, определяющих групповую принадлежность крови человека по этим системам.

Антигенная структура эритроцитарной мембраны

Эритроцитарная мембрана содержит различные антигены видовой, групповой и индивидуальной специфичности. Различают два вида изоантигенов эритроцитов, определяющих групповую специфичность крови человек - А и В агглютиногены. Соответственно в плазме или сыворотке крови обнаруживаются две разновидности изоантител - агглютинины α и β. В крови человека не содержатся одноименных агглютиногенов и агглютининов. Их встреча и взаимодействие может возникать при переливании несовместимых групп крови, приводить к развитию агглютинации и гемолиза эритроцитов.

Как известно, I (0) группа крови характеризуется отсутствием в эритроцитах агглютиногенов А и В при наличии в плазме или сыворотке крови агглютининов α и β, встречается у 40-50 % людей стран центральной Европы.

II (А) группа крови характеризуется наличием в мембране эритроцитов агглютиногена А, в то время как в плазме крови содержатся агглютинины β. Указанная группа крови распространена у 30-40 % людей.

III (В) группа крови характеризуется наличием агглютиногена В в мембране эритроцитов, а в плазме или сыворотке крови - наличием агглютининов типа α. Эта группа крови имеет место примерно у 10 % населения.

IV (АВ) группа крови характеризуется наличием в мембране эритроцитов фиксированных А и В агглютиногенов, при этом в плазме или сыворотке крови отсутствуют естественные агглютинины α и β. Данная группа крови встречается у 6 % населения.

Генетический контроль антигенной системы А,В,О мембран эритроцитов представлен генами О, Н, А, В, локализованными в длинном плече 9-й пары хромосом.

Агглютинины α и β относятся к классу Ig M, являются естественными антителами, образуются у ребенка на первом году жизни, достигая максимума к 8 - 10 годам.

Второе место среди антигенных свойств мембран эритроцитов по клинической значимости занимает система Rh - Hr. Впервые Резус-фактор был открыт в 1940 году К. Ландштейнером и А. Винером, содержится в эритроцитах у 85 % людей белой расы. У 15 % людей эти эритроцитарные антигены отсутствуют. В настоящее время установлена липопротеидная природа антигенов данной системы, их насчитывается около 20, они образуют различные комбинации в мембране эритроцитов. Наиболее распространенными резусантигенами являются 6 разновидностей: Rh0 (D), rh’ (C), rh’’ (E), Hr0 (d), hr’ (c), hr’’ (e). Наиболее сильным антигеном этой группы является Rh0 (D).

Антитела системы Rh и Hr - антирезусагглютинины являются приобретенными, иммунными, отсутствуют в крови Rh (-) людей с момента рождения, синтезируются при первом переливании Rh (+) крови Rh (-) реципиенту, а также при первой беременности Rh (-) женщины Rh(+) плодом. При первой беременности эти антитела синтезируются медленно в течение нескольких месяцев в небольшом титре, не вызывая серьезных осложнений у матери и плода. При повторном контакте резус-отрицательного человека с резус-положительными эритроцитами возможен резус-конфликт. Антитела системы Rh - Hr относятся к классу Ig G, поэтому они легко проникают через плацентарный барьер, вызывают реакции агглютинации и гемолиза эритроцитов плода, что сопровождается развитием гемолитической желтухи новорожденных. В случае повторного переливания несовместимой по Rh-антигенам крови донора и реципиента может наблюдаться гемотрансфузионный шок.

Библиографическая ссылка

Чеснокова Н.П., Понукалина Е.В., Бизенкова М.Н. ЛЕКЦИЯ 2. ОСОБЕННОСТИ СТРУКТУРЫ И ФУНКЦИЙ ЭРИТРОЦИТАРНОЙ МЕМБРАНЫ // Успехи современного естествознания. – 2015. – № 1-2. – С. 328-331;
URL: http://natural-sciences.ru/ru/article/view?id=34842 (дата обращения: 25.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»