Acest material este dedicat unui astfel de concept precum unghiul dintre două linii care se intersectează. În primul paragraf vom explica ce este și o vom arăta în ilustrații. Apoi ne vom uita la modalitățile în care puteți găsi sinusul, cosinusul acestui unghi și unghiul în sine (vom lua în considerare separat cazurile cu un plan și spațiu tridimensional), vom da formulele necesare și vom arăta cu exemple exact modul în care sunt utilizate în practică.

Yandex.RTB R-A-339285-1

Pentru a înțelege care este unghiul format atunci când două drepte se intersectează, trebuie să ne amintim însăși definiția unghiului, perpendicularității și punctului de intersecție.

Definiția 1

Numim două drepte care se intersectează dacă au un punct comun. Acest punct se numește punctul de intersecție a două drepte.

Fiecare linie dreaptă este împărțită de un punct de intersecție în raze. Ambele linii drepte formează 4 unghiuri, dintre care două sunt verticale și două sunt adiacente. Dacă știm măsura unuia dintre ele, atunci le putem determina pe cele rămase.

Să presupunem că știm că unul dintre unghiuri este egal cu α. În acest caz, unghiul care este vertical în raport cu acesta va fi, de asemenea, egal cu α. Pentru a găsi unghiurile rămase, trebuie să calculăm diferența 180 ° - α. Dacă α este egal cu 90 de grade, atunci toate unghiurile vor fi unghiuri drepte. Liniile care se intersectează în unghi drept sunt numite perpendiculare (un articol separat este dedicat conceptului de perpendicularitate).

Aruncă o privire la poză:

Să trecem la formularea definiției principale.

Definiția 2

Unghiul format din două drepte care se intersectează este măsura celui mai mic dintre cele 4 unghiuri care formează aceste două drepte.

Din definiție trebuie trasă o concluzie importantă: dimensiunea unghiului în acest caz va fi exprimată de oricare număr realîn intervalul (0, 90). Dacă liniile sunt perpendiculare, atunci unghiul dintre ele va fi în orice caz egal cu 90 de grade.

Capacitatea de a găsi măsura unghiului dintre două drepte care se intersectează este utilă pentru rezolvarea multor probleme practice. Metoda de rezolvare poate fi aleasă din mai multe opțiuni.

Pentru început, putem lua metode geometrice. Dacă știm ceva despre unghiurile suplimentare, atunci le putem raporta la unghiul de care avem nevoie folosind proprietățile figurilor egale sau similare. De exemplu, dacă cunoaștem laturile unui triunghi și trebuie să calculăm unghiul dintre liniile pe care sunt situate aceste laturi, atunci teorema cosinusului este potrivită pentru soluția noastră. Dacă avem condiția triunghi dreptunghic, atunci pentru calcule vom avea nevoie și de cunoștințe despre sinus, cosinus și tangenta unui unghi.

Metoda coordonatelor este, de asemenea, foarte convenabilă pentru rezolvarea problemelor de acest tip. Să explicăm cum să-l folosim corect.

Avem un sistem de coordonate dreptunghiular (cartezian) O x y, în care sunt date două drepte. Să le notăm cu literele a și b. Liniile drepte pot fi descrise folosind unele ecuații. Liniile originale au un punct de intersecție M. Cum se determină unghiul necesar (să-l notăm α) între aceste drepte?

Să începem prin a formula principiul de bază al găsirii unui unghi în condiții date.

Știm că conceptul de linie dreaptă este strâns legat de concepte precum un vector de direcție și un vector normal. Dacă avem o ecuație a unei anumite drepte, putem lua din ea coordonatele acestor vectori. Putem face acest lucru pentru două linii care se intersectează simultan.

Unghiul subtins de două drepte care se intersectează poate fi găsit folosind:

  • unghiul dintre vectorii de direcție;
  • unghiul dintre vectorii normali;
  • unghiul dintre vectorul normal al unei linii și vectorul direcție al celeilalte.

Acum să ne uităm la fiecare metodă separat.

1. Să presupunem că avem o dreaptă a cu un vector de direcție a → = (a x, a y) și o dreaptă b cu un vector de direcție b → (b x, b y). Acum să reprezentăm doi vectori a → și b → din punctul de intersecție. După aceasta vom vedea că fiecare va fi situat pe propria linie dreaptă. Apoi avem patru opțiuni pentru aranjarea lor relativă. Vezi ilustrația:

Dacă unghiul dintre doi vectori nu este obtuz, atunci va fi unghiul de care avem nevoie între liniile care se intersectează a și b. Dacă este obtuz, atunci unghiul dorit va fi egal cu unghiul adiacent unghiului a →, b → ^. Astfel, α = a → , b → ^ dacă a → , b → ^ ≤ 90 ° , și α = 180 ° - a → , b → ^ dacă a → , b → ^ > 90 ° .

Pe baza faptului că cosinusurile unghiurilor egale sunt egale, putem rescrie egalitățile rezultate astfel: cos α = cos a →, b → ^, dacă a →, b → ^ ≤ 90 °; cos α = cos 180 ° - a →, b → ^ = - cos a →, b → ^, dacă a →, b → ^ > 90 °.

În al doilea caz s-au folosit formule de reducere. Astfel,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 - cos a → , b → ^ , cos a → , b → ^< 0 ⇔ cos α = cos a → , b → ^

Să scriem ultima formulă în cuvinte:

Definiția 3

Cosinusul unghiului format din două drepte care se intersectează va fi egal cu modulul cosinusului unghiului dintre vectorii săi de direcție.

Forma generală a formulei pentru cosinusul unghiului dintre doi vectori a → = (a x , a y) și b → = (b x , b y) arată astfel:

cos a → , b → ^ = a → , b → ^ a → b → = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

Din aceasta putem deriva formula pentru cosinusul unghiului dintre două drepte date:

cos α = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2 = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

Apoi unghiul în sine poate fi găsit folosind următoarea formulă:

α = a r c cos a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

Aici a → = (a x , a y) și b → = (b x , b y) sunt vectorii de direcție ai dreptelor date.

Să dăm un exemplu de rezolvare a problemei.

Exemplul 1

Într-un sistem de coordonate dreptunghiular pe un plan, sunt date două drepte care se intersectează a și b. Ele pot fi descrise prin ecuațiile parametrice x = 1 + 4 · λ y = 2 + λ λ ∈ R și x 5 = y - 6 - 3. Calculați unghiul dintre aceste drepte.

Soluţie

Avem o ecuație parametrică în starea noastră, ceea ce înseamnă că pentru această linie putem nota imediat coordonatele vectorului său de direcție. Pentru a face acest lucru, trebuie să luăm valorile coeficienților pentru parametru, adică. dreapta x = 1 + 4 λ y = 2 + λ λ ∈ R va avea un vector de direcție a → = (4, 1).

A doua linie este descrisă folosind ecuația canonică x 5 = y - 6 - 3. Aici putem lua coordonatele de la numitori. Astfel, această dreaptă are un vector de direcție b → = (5 , - 3) .

Apoi, trecem direct la găsirea unghiului. Pentru a face acest lucru, pur și simplu înlocuiți coordonatele existente ale celor doi vectori în formula de mai sus α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 . Obținem următoarele:

α = a r c cos 4 5 + 1 (- 3) 4 2 + 1 2 5 2 + (- 3) 2 = a r c cos 17 17 34 = a r c cos 1 2 = 45 °

Răspuns: Aceste linii drepte formează un unghi de 45 de grade.

Putem rezolva o problemă similară găsind unghiul dintre vectorii normali. Dacă avem o dreaptă a cu un vector normal n a → = (n a x , n a y) și o dreaptă b cu un vector normal n b → = (n b x , n b y), atunci unghiul dintre ele va fi egal cu unghiul dintre n a → și n b → sau unghiul care va fi adiacent lui n a →, n b → ^. Această metodă este prezentată în imagine:

Formulele pentru calcularea cosinusului unghiului dintre liniile care se intersectează și acest unghi în sine folosind coordonatele vectorilor normali arată astfel:

cos α = cos n a → , n b → ^ = n a x n b x + n a y + n de y n a x 2 + n a y 2 n b x 2 + n de y 2 α = a r c cos n a x n b x + n a y + n de y n a x 2 + n a y 2 n b x 2 + n b y 2

Aici n a → și n b → denotă vectorii normali ai două drepte date.

Exemplul 2

Într-un sistem de coordonate dreptunghiular, două linii drepte sunt date folosind ecuațiile 3 x + 5 y - 30 = 0 și x + 4 y - 17 = 0. Găsiți sinusul și cosinusul unghiului dintre ele și mărimea acestui unghi în sine.

Soluţie

Liniile originale sunt specificate folosind ecuații de linii normale de forma A x + B y + C = 0. Notăm vectorul normal ca n → = (A, B). Să găsim coordonatele primului vector normal pentru o linie și să le scriem: n a → = (3, 5) . Pentru a doua linie x + 4 y - 17 = 0, vectorul normal va avea coordonatele n b → = (1, 4). Acum să adăugăm valorile obținute la formulă și să calculăm totalul:

cos α = cos n a → , n b → ^ = 3 1 + 5 4 3 2 + 5 2 1 2 + 4 2 = 23 34 17 = 23 2 34

Dacă cunoaștem cosinusul unui unghi, atunci putem calcula sinusul acestuia folosind identitatea trigonometrică de bază. Deoarece unghiul α format din drepte nu este obtuz, atunci sin α = 1 - cos 2 α = 1 - 23 2 34 2 = 7 2 34.

În acest caz, α = a r c cos 23 2 34 = a r c sin 7 2 34.

Răspuns: cos α = 23 2 34, sin α = 7 2 34, α = a r c cos 23 2 34 = a r c sin 7 2 34

Să analizăm ultimul caz - găsirea unghiului dintre drepte dacă cunoaștem coordonatele vectorului de direcție al unei drepte și vectorul normal al celeilalte.

Să presupunem că dreapta a are un vector de direcție a → = (a x , a y) , iar dreapta b are un vector normal n b → = (n b x , n b y) . Trebuie să setăm acești vectori deoparte de punctul de intersecție și să luăm în considerare toate opțiunile pentru pozițiile lor relative. Vezi in poza:

Dacă unghiul dintre vectorii dați nu este mai mare de 90 de grade, se dovedește că va completa unghiul dintre a și b la un unghi drept.

a → , n b → ^ = 90 ° - α dacă a → , n b → ^ ≤ 90 ° .

Dacă este mai mică de 90 de grade, atunci obținem următoarele:

a → , n b → ^ > 90 ° , apoi a → , n b → ^ = 90 ° + α

Folosind regula egalității cosinusurilor de unghiuri egale, scriem:

cos a → , n b → ^ = cos (90 ° - α) = sin α pentru a → , n b → ^ ≤ 90 ° .

cos a → , n b → ^ = cos 90 ° + α = - sin α pentru a → , n b → ^ > 90 ° .

Astfel,

sin α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° - cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , a → , n b → ^ > 0 - cos a → , n b → ^ , a → , n b → ^< 0 ⇔ ⇔ sin α = cos a → , n b → ^

Să formulăm o concluzie.

Definiția 4

Pentru a găsi sinusul unghiului dintre două drepte care se intersectează pe un plan, trebuie să calculați modulul cosinusului unghiului dintre vectorul de direcție al primei linii și vectorul normal al celei de-a doua.

Să notăm formulele necesare. Aflarea sinusului unui unghi:

sin α = cos a → , n b → ^ = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2

Găsirea unghiului în sine:

α = a r c sin = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2

Aici a → este vectorul de direcție al primei linii, iar n b → este vectorul normal al celei de-a doua.

Exemplul 3

Două drepte care se intersectează sunt date de ecuațiile x - 5 = y - 6 3 și x + 4 y - 17 = 0. Aflați unghiul de intersecție.

Soluţie

Luăm coordonatele ghidului și ale vectorului normal din ecuațiile date. Rezultă a → = (- 5, 3) și n → b = (1, 4). Luăm formula α = a r c sin = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2 și calculăm:

α = a r c sin = - 5 1 + 3 4 (- 5) 2 + 3 2 1 2 + 4 2 = a r c sin 7 2 34

Vă rugăm să rețineți că am luat ecuațiile din problema anterioară și am obținut exact același rezultat, dar într-un mod diferit.

Răspuns:α = a r c sin 7 2 34

Să prezentăm o altă modalitate de a găsi unghiul dorit folosind coeficienții unghiulari ai liniilor drepte date.

Avem o linie a, care este definită într-un sistem de coordonate dreptunghiular folosind ecuația y = k 1 x + b 1, și o linie b, definită ca y = k 2 x + b 2. Acestea sunt ecuații ale dreptelor cu pante. Pentru a găsi unghiul de intersecție, folosim formula:

α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1, unde k 1 și k 2 sunt pantele dreptelor date. Pentru a obține această înregistrare s-au folosit formule pentru determinarea unghiului prin coordonatele vectorilor normali.

Exemplul 4

Există două drepte care se intersectează într-un plan, date de ecuațiile y = - 3 5 x + 6 și y = - 1 4 x + 17 4. Calculați valoarea unghiului de intersecție.

Soluţie

Coeficienții unghiulari ai dreptelor noastre sunt egali cu k 1 = - 3 5 și k 2 = - 1 4. Să le adăugăm la formula α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 și să calculăm:

α = a r c cos - 3 5 · - 1 4 + 1 - 3 5 2 + 1 · - 1 4 2 + 1 = a r c cos 23 20 34 24 · 17 16 = a r c cos 23 2 34

Răspuns:α = a r c cos 23 2 34

În concluziile acestui paragraf, trebuie menționat că formulele pentru găsirea unghiului prezentate aici nu trebuie învățate pe de rost. Pentru a face acest lucru, este suficient să cunoașteți coordonatele ghidajelor și/sau ale vectorilor normali ai liniilor date și să le puteți determina folosind diferite tipuri de ecuații. Dar este mai bine să vă amintiți sau să scrieți formulele pentru calcularea cosinusului unui unghi.

Cum se calculează unghiul dintre liniile care se intersectează în spațiu

Calculul unui astfel de unghi poate fi redus la calcularea coordonatelor vectorilor de direcție și determinarea mărimii unghiului format de acești vectori. Pentru astfel de exemple se folosește același raționament pe care l-am dat mai înainte.

Să presupunem că avem un sistem de coordonate dreptunghiular situat în spațiul tridimensional. Conține două drepte a și b cu un punct de intersecție M. Pentru a calcula coordonatele vectorilor de direcție, trebuie să cunoaștem ecuațiile acestor drepte. Să notăm vectorii de direcție a → = (a x , a y , a z) și b → = (b x , b y , b z) . Pentru a calcula cosinusul unghiului dintre ele, folosim formula:

cos α = cos a → , b → ^ = a → , b → a → b → = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2

Pentru a găsi unghiul în sine, avem nevoie de această formulă:

α = a r c cos a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2

Exemplul 5

Avem o linie definită în spațiul tridimensional folosind ecuația x 1 = y - 3 = z + 3 - 2. Se știe că se intersectează cu axa O z. Calculați unghiul de interceptare și cosinusul acelui unghi.

Soluţie

Să notăm unghiul care trebuie calculat cu litera α. Să notăm coordonatele vectorului direcție pentru prima dreaptă – a → = (1, - 3, - 2) . Pentru aplicarea axei putem lua vector de coordonate k → = (0, 0, 1) ca ghid. Am primit datele necesare și le putem adăuga la formula dorită:

cos α = cos a → , k → ^ = a → , k → a → k → = 1 0 - 3 0 - 2 1 1 2 + (- 3) 2 + (- 2) 2 0 2 + 0 2 + 1 2 = 2 8 = 1 2

Ca rezultat, am constatat că unghiul de care avem nevoie va fi egal cu a r c cos 1 2 = 45 °.

Răspuns: cos α = 1 2 , α = 45 ° .

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Să fie date linii drepte în spațiu lŞi m. Prin un punct A al spațiului tragem linii drepte l 1 || lŞi m 1 || m(Fig. 138).

Rețineți că punctul A poate fi ales în mod arbitrar, poate fi situat pe una dintre aceste linii; Dacă drept lŞi m intersectează, atunci A poate fi luat drept punct de intersecție al acestor drepte ( l 1 = lŞi m 1 = m).

Unghiul dintre liniile neparalele lŞi m este valoarea celui mai mic dintre unghiurile adiacente formate din linii care se intersectează l 1 Şi m 1 (l 1 || l, m 1 || m). Unghiul dintre liniile paralele este considerat egal cu zero.

Unghiul dintre liniile drepte lŞi m notat cu \(\widehat((l;m))\). Din definiție rezultă că dacă se măsoară în grade, atunci 0° < \(\widehat((l;m)) \) < 90°, iar dacă este în radiani, atunci 0 < \(\widehat((l;m)) \) < π / 2 .

Sarcină. Dat un cub ABCDA 1 B 1 C 1 D 1 (Fig. 139).

Aflați unghiul dintre liniile drepte AB și DC 1.

Încrucișarea liniilor drepte AB și DC 1. Deoarece linia dreaptă DC este paralelă cu dreapta AB, unghiul dintre liniile drepte AB și DC 1, conform definiției, este egal cu \(\widehat(C_(1)DC)\).

Prin urmare, \(\widehat((AB;DC_1))\) = 45°.

Direct lŞi m sunt numite perpendicular, dacă \(\widehat((l;m)) \) = π / 2. De exemplu, într-un cub

Calculul unghiului dintre drepte.

Problema calculării unghiului dintre două drepte în spațiu se rezolvă în același mod ca și în plan. Să notăm cu φ mărimea unghiului dintre drepte l 1 Şi l 2, iar prin ψ - mărimea unghiului dintre vectorii de direcție O Şi b aceste linii drepte.

Atunci dacă

ψ <90° (рис. 206, а), то φ = ψ; если же ψ >90° (Fig. 206.6), apoi φ = 180° - ψ. Evident, în ambele cazuri este adevărată egalitatea cos φ = |cos ψ|. Conform formulei (cosinusul unghiului dintre vectorii nenuli a și b este egal cu produsul scalar al acestor vectori împărțit la produsul lungimilor lor) avem

$$ cos\psi = cos\widehat((a; b)) = \frac(a\cdot b)(|a|\cdot |b|) $$

prin urmare,

$$ cos\phi = \frac(|a\cdot b|)(|a|\cdot |b|) $$

Lăsați liniile drepte să fie date de propriile lor ecuații canonice

$$ \frac(x-x_1)(a_1)=\frac(y-y_1)(a_2)=\frac(z-z_1)(a_3) \;\; Și \;\; \frac(x-x_2)(b_1)=\frac(y-y_2)(b_2)=\frac(z-z_2)(b_3) $$

Apoi unghiul φ dintre linii este determinat folosind formula

$$ cos\phi = \frac(|a_(1)b_1+a_(2)b_2+a_(3)b_3|)(\sqrt((a_1)^2+(a_2)^2+(a_3)^2 )\sqrt((b_1)^2+(b_2)^2+(b_3)^2)) (1)$$

Dacă una dintre linii (sau ambele) este dată de ecuații non-canonice, atunci pentru a calcula unghiul trebuie să găsiți coordonatele vectorilor de direcție ai acestor linii și apoi să utilizați formula (1).

Sarcina 1. Calculați unghiul dintre linii

$$ \frac(x+3)(-\sqrt2)=\frac(y)(\sqrt2)=\frac(z-7)(-2) \;\;şi\;\; \frac(x)(\sqrt3)=\frac(y+1)(\sqrt3)=\frac(z-1)(\sqrt6) $$

Vectorii de direcție ai liniilor drepte au coordonate:

a = (-√2; √2; -2), b = (√3 ; √3 ; √6 ).

Folosind formula (1) găsim

$$ cos\phi = \frac(|-\sqrt6+\sqrt6-2\sqrt6|)(\sqrt(2+2+4)\sqrt(3+3+6))=\frac(2\sqrt6)( 2\sqrt2\cdot 2\sqrt3)=\frac(1)(2) $$

Prin urmare, unghiul dintre aceste linii este de 60°.

Sarcina 2. Calculați unghiul dintre linii

$$ \begin(cases)3x-12z+7=0\\x+y-3z-1=0\end(cases) și \begin(cases)4x-y+z=0\\y+z+1 =0\end(cazuri) $$

În spatele vectorului ghid O Pe prima linie luăm produsul vectorial al vectorilor normali n 1 = (3; 0; -12) și n 2 = (1; 1; -3) planuri care definesc această dreaptă. Folosind formula \(=\begin(vmatrix) i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end(vmatrix) \) obținem

$$ a==\begin(vmatrix) i & j & k \\ 3 & 0 & -12 \\ 1 & 1 & -3 \end(vmatrix)=12i-3i+3k $$

În mod similar, găsim vectorul direcție al celei de-a doua drepte:

$$ b=\begin(vmatrix) i & j & k \\ 4 & -1 & 1 \\ 0 & 1 & 1 \end(vmatrix)=-2i-4i+4k $$

Dar folosind formula (1) calculăm cosinusul unghiului dorit:

$$ cos\phi = \frac(|12\cdot (-2)-3(-4)+3\cdot 4|)(\sqrt(12^2+3^2+3^2)\sqrt(2) ^2+4^2+4^2))=0 $$

Prin urmare, unghiul dintre aceste linii este de 90°.

Sarcina 3.În piramida triunghiulară MABC, muchiile MA, MB și MC sunt reciproc perpendiculare (Fig. 207);

lungimile lor sunt respectiv 4, 3, 6. Punctul D este mijlocul [MA]. Aflați unghiul φ dintre liniile CA și DB.

Fie CA și DB vectorii de direcție ai dreptelor CA și DB.

Să luăm punctul M ca origine a coordonatelor. Prin condiția ecuației avem A (4; 0; 0), B(0; 0; 3), C(0; 6; 0), D (2; 0; 0). Prin urmare \(\overrightarrow(CA)\) = (4; - 6;0), \(\overrightarrow(DB)\)= (-2; 0; 3). Să folosim formula (1):

$$ cos\phi=\frac(|4\cdot (-2)+(-6)\cdot 0+0\cdot 3|)(\sqrt(16+36+0)\sqrt(4+0+9 )) $$

Folosind tabelul cosinus, aflăm că unghiul dintre liniile drepte CA și DB este de aproximativ 72°.

O. Să fie date două drepte Aceste linii drepte, așa cum este indicat în capitolul 1, formează diverse unghiuri pozitive și negative, care pot fi fie acute, fie obtuze. Cunoscând unul dintre aceste unghiuri, putem găsi cu ușurință oricare altul.

Apropo, pentru toate aceste unghiuri valoarea numerică a tangentei este aceeași, diferența poate fi doar în semn

Ecuații de linii. Numerele sunt proiecțiile vectorilor de direcție ai primei și celei de-a doua drepte. Unghiul dintre acești vectori este egal cu unul dintre unghiurile formate de drepte. Prin urmare, problema se rezumă la determinarea unghiului dintre vectori

Pentru simplitate, putem fi de acord că unghiul dintre două drepte este un unghi pozitiv acut (ca, de exemplu, în Fig. 53).

Atunci tangenta acestui unghi va fi întotdeauna pozitivă. Astfel, dacă există un semn minus în partea dreaptă a formulei (1), atunci trebuie să-l renunțăm, adică să salvăm doar valoarea absolută.

Exemplu. Determinați unghiul dintre liniile drepte

Conform formulei (1) avem

Cu. Dacă se indică care dintre laturile unghiului este începutul și care este sfârșitul lui, atunci, numărând întotdeauna direcția unghiului în sens invers acelor de ceasornic, putem extrage ceva mai mult din formula (1). După cum se vede ușor din fig. 53, semnul obținut în partea dreaptă a formulei (1) va indica ce fel de unghi - acut sau obtuz - se formează a doua linie dreaptă cu prima.

(Într-adevăr, din Fig. 53 vedem că unghiul dintre primul și al doilea vector de direcție este fie egal cu unghiul dorit dintre liniile drepte, fie diferă de acesta cu ±180°.)

d. Dacă liniile sunt paralele, atunci vectorii lor de direcție sunt paraleli Aplicând condiția de paralelism a doi vectori, obținem!

Aceasta este o condiție necesară și suficientă pentru paralelismul a două linii.

Exemplu. Direct

sunt paralele deoarece

e. Dacă liniile sunt perpendiculare, atunci vectorii lor de direcție sunt și ei perpendiculari. Aplicând condiția de perpendicularitate a doi vectori, obținem condiția de perpendicularitate a două drepte și anume

Exemplu. Direct

sunt perpendiculare datorită faptului că

În legătură cu condițiile de paralelism și perpendicularitate, vom rezolva următoarele două probleme.

f. Desenați o dreaptă printr-un punct paralel cu dreapta dată

Soluția se realizează așa. Deoarece linia dorită este paralelă cu aceasta, atunci pentru vectorul său de direcție îl putem lua pe aceeași cu cea a dreptei date, adică un vector cu proiecțiile A și B. Și atunci ecuația dreptei dorite se va scrie în forma (§ 1)

Exemplu. Ecuația unei drepte care trece prin punctul (1; 3) paralel cu dreapta

va fi urmatorul!

g. Desenați o dreaptă printr-un punct perpendicular pe dreapta dată

Aici nu mai este potrivit să luăm vectorul cu proiecțiile A și ca vector de ghidare, dar este necesar să luăm vectorul perpendicular pe acesta. Prin urmare, proiecțiile acestui vector trebuie alese în funcție de condiția de perpendicularitate a ambilor vectori, adică în funcție de condiția

Această condiție poate fi îndeplinită în nenumărate moduri, deoarece aici este o ecuație cu două necunoscute

Exemplu. Ecuația unei drepte care trece prin punctul (-7; 2) într-o dreaptă perpendiculară

vor fi următoarele (după formula a doua)!

h. În cazul în care liniile sunt date prin ecuații de forma

Oh-oh-oh-oh-oh... ei bine, e greu, de parcă și-ar fi citit o propoziție =) Cu toate acestea, relaxarea va ajuta mai târziu, mai ales că astăzi mi-am cumpărat accesoriile potrivite. Prin urmare, să trecem la prima secțiune, sper că până la sfârșitul articolului voi menține o dispoziție veselă.

Poziția relativă a două linii drepte

Acesta este cazul când publicul cântă în cor. Două linii drepte pot:

1) potrivire;

2) fi paralel: ;

3) sau se intersectează într-un singur punct: .

Ajutor pentru manechini : Vă rugăm să rețineți semnul matematic de intersecție, acesta va apărea foarte des. Notația înseamnă că linia se intersectează cu linia în punctul .

Cum se determină poziția relativă a două linii?

Să începem cu primul caz:

Două drepte coincid dacă și numai dacă coeficienții lor corespunzători sunt proporționali, adică există un număr „lambda” astfel încât egalitățile sunt satisfăcute

Să luăm în considerare liniile drepte și să creăm trei ecuații din coeficienții corespunzători: . Din fiecare ecuație rezultă că, prin urmare, aceste drepte coincid.

Într-adevăr, dacă toți coeficienții ecuației înmulțiți cu –1 (schimbați semnele) și toți coeficienții ecuației tăiat cu 2, obțineți aceeași ecuație: .

Al doilea caz, când liniile sunt paralele:

Două drepte sunt paralele dacă și numai dacă coeficienții lor ai variabilelor sunt proporționali: , Dar.

Ca exemplu, luați în considerare două linii drepte. Verificăm proporționalitatea coeficienților corespunzători pentru variabilele:

Cu toate acestea, este destul de evident că.

Și al treilea caz, când liniile se intersectează:

Două drepte se intersectează dacă și numai dacă coeficienții lor ai variabilelor NU sunt proporționali, adică NU există o astfel de valoare a „lambda” încât egalitățile să fie satisfăcute

Deci, pentru linii drepte vom crea un sistem:

Din prima ecuație rezultă că , iar din a doua ecuație: , ceea ce înseamnă sistemul este inconsecvent(fara solutii). Astfel, coeficienții variabilelor nu sunt proporționali.

Concluzie: liniile se intersectează

În problemele practice, puteți utiliza schema de soluții tocmai discutată. Apropo, amintește foarte mult de algoritmul de verificare a coliniarității vectorilor, pe care l-am uitat în clasă Conceptul de (in)dependență liniară a vectorilor. Baza vectorilor. Dar există un ambalaj mai civilizat:

Exemplul 1

Descoperi poziție relativă direct:

Soluţie pe baza studiului vectorilor de direcție ai liniilor drepte:

a) Din ecuații găsim vectorii de direcție ai dreptelor: .


, ceea ce înseamnă că vectorii nu sunt coliniari și liniile se intersectează.

Pentru orice eventualitate, voi pune o piatră cu indicatoare la răscruce:

Restul sar peste piatra si urmeaza mai departe, direct catre Kashchei Nemuritorul =)

b) Aflați vectorii de direcție ai dreptelor:

Liniile au același vector de direcție, ceea ce înseamnă că sunt fie paralele, fie coincidente. Nu este nevoie să numărăm determinantul aici.

Este evident că coeficienții necunoscutelor sunt proporționale, iar .

Să aflăm dacă egalitatea este adevărată:

Astfel,

c) Aflați vectorii de direcție ai dreptelor:

Să calculăm determinantul format din coordonatele acestor vectori:
, prin urmare, vectorii de direcție sunt coliniari. Liniile sunt fie paralele, fie coincidente.

Coeficientul de proporționalitate „lambda” este ușor de văzut direct din raportul vectorilor de direcție coliniară. Cu toate acestea, poate fi găsit și prin coeficienții ecuațiilor înșiși: .

Acum să aflăm dacă egalitatea este adevărată. Ambii termeni liberi sunt zero, deci:

Valoarea rezultată satisface această ecuație (orice număr o satisface în general).

Astfel, liniile coincid.

Răspuns:

Foarte curand vei invata (sau chiar ai invatat deja) sa rezolvi problema discutata verbal la propriu in cateva secunde. În acest sens, nu văd niciun rost să ofer ceva pentru decizie independentă, este mai bine să puneți o altă cărămidă importantă în fundația geometrică:

Cum se construiește o linie paralelă cu una dată?

Pentru ignorarea acestui lucru cea mai simplă sarcină Privighetoarea Tâlharul pedepsește aspru.

Exemplul 2

Linia dreaptă este dată de ecuație. Scrieți o ecuație pentru o dreaptă paralelă care trece prin punct.

Soluţie: Să notăm linia necunoscută cu litera . Ce spune starea despre ea? Linia dreaptă trece prin punct. Și dacă liniile sunt paralele, atunci este evident că vectorul de direcție al dreptei „tse” este potrivit și pentru construirea dreptei „de”.

Scoatem vectorul direcție din ecuație:

Răspuns:

Exemplul de geometrie pare simplu:

Testarea analitică constă din următorii pași:

1) Verificăm ca liniile să aibă același vector de direcție (dacă ecuația dreptei nu este simplificată corespunzător, atunci vectorii vor fi coliniari).

2) Verificați dacă punctul satisface ecuația rezultată.

În cele mai multe cazuri, testarea analitică poate fi efectuată cu ușurință pe cale orală. Priviți cele două ecuații și mulți dintre voi veți determina rapid paralelismul liniilor fără nici un desen.

Exemplele de soluții independente de astăzi vor fi creative. Pentru că tot va trebui să concurezi cu Baba Yaga, iar ea, știi, este o iubitoare de tot felul de ghicitori.

Exemplul 3

Scrieți o ecuație pentru o dreaptă care trece printr-un punct paralel cu dreapta dacă

Există o modalitate rațională și nu atât de rațională de a o rezolva. Cea mai scurtă cale este la sfârșitul lecției.

Am lucrat puțin cu linii paralele și vom reveni la ele mai târziu. Cazul liniilor coincidente este de puțin interes, așa că permiteți-ne să luăm în considerare o problemă care vă este bine cunoscută programa școlară:

Cum se află punctul de intersecție a două drepte?

Dacă drept se intersectează în punctul , atunci coordonatele sale sunt soluția sisteme de ecuații liniare

Cum să găsiți punctul de intersecție al liniilor? Rezolvați sistemul.

Poftim semnificația geometrică a sistemului celor doi ecuații liniare cu două necunoscute- acestea sunt două linii care se intersectează (cel mai adesea) pe un plan.

Exemplul 4

Aflați punctul de intersecție al dreptelor

Soluţie: Există două moduri de rezolvare - grafică și analitică.

Metoda grafică este să trageți pur și simplu liniile date și să aflați punctul de intersecție direct din desen:

Iată punctul nostru de vedere: . Pentru a verifica, ar trebui să înlocuiți coordonatele sale în fiecare ecuație a dreptei; acestea ar trebui să se potrivească atât acolo, cât și acolo. Cu alte cuvinte, coordonatele unui punct sunt o soluție a sistemului. În esență, ne-am uitat la o soluție grafică sisteme de ecuații liniare cu două ecuații, două necunoscute.

Metoda grafică nu este, desigur, rea, dar există dezavantaje vizibile. Nu, ideea nu este că elevii de clasa a șaptea decid astfel, ideea este că va dura timp pentru a crea un desen corect și EXACT. În plus, unele linii drepte nu sunt atât de ușor de construit, iar punctul de intersecție în sine poate fi situat undeva în al treizecilea regat, în afara foii caietului.

Prin urmare, este mai oportun să căutați punctul de intersecție folosind o metodă analitică. Să rezolvăm sistemul:

Pentru rezolvarea sistemului s-a folosit metoda adunării termen cu termen a ecuațiilor. Pentru a dezvolta abilități relevante, luați o lecție Cum se rezolvă un sistem de ecuații?

Răspuns:

Verificarea este banală - coordonatele punctului de intersecție trebuie să satisfacă fiecare ecuație a sistemului.

Exemplul 5

Aflați punctul de intersecție al dreptelor dacă acestea se intersectează.

Acesta este un exemplu de rezolvat singur. Este convenabil să împărțiți sarcina în mai multe etape. Analiza stării sugerează că este necesar:
1) Scrieți ecuația dreptei.
2) Scrieți ecuația dreptei.
3) Aflați poziția relativă a liniilor.
4) Dacă liniile se intersectează, atunci găsiți punctul de intersecție.

Dezvoltarea unui algoritm de acțiune este tipică pentru multe probleme geometrice și mă voi concentra în mod repetat asupra acestui lucru.

Soluție completă și răspuns la sfârșitul lecției:

Nici măcar o pereche de pantofi nu a fost uzată înainte de a ajunge la a doua secțiune a lecției:

Linii perpendiculare. Distanța de la un punct la o dreaptă.
Unghiul dintre liniile drepte

Să începem cu o sarcină tipică și foarte importantă. În prima parte, am învățat cum să construim o linie dreaptă paralelă cu aceasta, iar acum coliba pe pulpele de pui se va întoarce la 90 de grade:

Cum se construiește o linie perpendiculară pe una dată?

Exemplul 6

Linia dreaptă este dată de ecuație. Scrieți o ecuație perpendiculară pe dreapta care trece prin punctul.

Soluţie: După condiţie se ştie că . Ar fi bine să găsiți vectorul de direcție al liniei. Deoarece liniile sunt perpendiculare, trucul este simplu:

Din ecuație „eliminăm” vectorul normal: , care va fi vectorul de direcție al dreptei.

Să compunem ecuația unei drepte folosind un punct și un vector de direcție:

Răspuns:

Să extindem schița geometrică:

Hmmm... Cer portocaliu, mare portocaliu, cămilă portocalie.

Verificarea analitică a soluției:

1) Scoatem vectorii de direcție din ecuații si cu ajutorul produsul scalar al vectorilor ajungem la concluzia că dreptele sunt într-adevăr perpendiculare: .

Apropo, puteți folosi vectori normali, este și mai ușor.

2) Verificați dacă punctul satisface ecuația rezultată .

Testul, din nou, este ușor de efectuat pe cale orală.

Exemplul 7

Aflați punctul de intersecție al dreptelor perpendiculare dacă ecuația este cunoscută și punct.

Acesta este un exemplu de rezolvat singur. Există mai multe acțiuni în problemă, așa că este convenabil să se formuleze punct cu punct soluția.

Călătoria noastră interesantă continuă:

Distanța de la punct la linie

Avem în fața noastră o fâșie dreaptă de râu și sarcina noastră este să ajungem la ea pe calea cea mai scurtă. Nu există obstacole, iar traseul cel mai optim va fi deplasarea pe perpendiculară. Adică, distanța de la un punct la o dreaptă este lungimea segmentului perpendicular.

Distanța în geometrie este în mod tradițional notată cu litera greacă „rho”, de exemplu: – distanța de la punctul „em” la linia dreaptă „de”.

Distanța de la punct la linie exprimat prin formula

Exemplul 8

Aflați distanța de la un punct la o linie

Soluţie: tot ce trebuie să faceți este să înlocuiți cu atenție numerele în formulă și să efectuați calculele:

Răspuns:

Să facem desenul:

Distanța găsită de la punct la linie este exact lungimea segmentului roșu. Dacă întocmești un desen pe hârtie în carouri la scară de 1 unitate. = 1 cm (2 celule), apoi distanța poate fi măsurată cu o riglă obișnuită.

Să luăm în considerare o altă sarcină bazată pe același desen:

Sarcina este de a găsi coordonatele unui punct care este simetric față de punctul relativ la dreapta . Vă sugerez să efectuați singur pașii, dar voi schița algoritmul de soluție cu rezultate intermediare:

1) Găsiți o dreaptă care este perpendiculară pe dreapta.

2) Aflați punctul de intersecție al dreptelor: .

Ambele acțiuni sunt discutate în detaliu în această lecție.

3) Punctul este punctul de mijloc al segmentului. Cunoaștem coordonatele mijlocului și unuia dintre capete. De formule pentru coordonatele punctului mijlociu al unui segment găsim .

Ar fi bine sa verificati ca distanta sa fie si de 2,2 unitati.

Aici pot apărea dificultăți în calcule, dar un microcalculator este de mare ajutor în turn, permițându-vă să numărați fracții comune. Te-am sfătuit de multe ori și te voi recomanda din nou.

Cum se află distanța dintre două linii paralele?

Exemplul 9

Aflați distanța dintre două drepte paralele

Acesta este un alt exemplu pentru a vă decide singur. Vă dau un mic indiciu: există nenumărate moduri de a rezolva acest lucru. Debriefing la sfârșitul lecției, dar este mai bine să încerci să ghicești singur, cred că ingeniozitatea ta a fost bine dezvoltată.

Unghiul dintre două linii drepte

Fiecare colț este un gheț:


În geometrie, unghiul dintre două linii drepte este considerat unghiul MAI MIC, din care rezultă automat că nu poate fi obtuz. În figură, unghiul indicat de arcul roșu nu este considerat unghiul dintre liniile care se intersectează. Și vecinul său „verde” sau orientat opus colțul „zmeură”.

Dacă liniile sunt perpendiculare, atunci oricare dintre cele 4 unghiuri poate fi luat ca unghi între ele.

Cum diferă unghiurile? Orientare. În primul rând, direcția în care unghiul este „defilat” este esențial importantă. În al doilea rând, un unghi orientat negativ este scris cu semnul minus, de exemplu dacă .

De ce ți-am spus asta? Se pare că ne putem descurca cu conceptul obișnuit de unghi. Cert este că formulele prin care vom găsi unghiuri pot duce cu ușurință la un rezultat negativ, iar acest lucru nu ar trebui să vă ia prin surprindere. Un unghi cu semnul minus nu este mai rău și are o semnificație geometrică foarte specifică. În desen, pentru un unghi negativ, asigurați-vă că indicați orientarea acestuia cu o săgeată (în sensul acelor de ceasornic).

Cum să găsiți unghiul dintre două linii drepte? Există două formule de lucru:

Exemplul 10

Găsiți unghiul dintre linii

SoluţieŞi Metoda unu

Luați în considerare două drepte date de ecuațiile din vedere generală:

Dacă drept nu perpendicular, Asta orientat Unghiul dintre ele poate fi calculat folosind formula:

Să acordăm o atenție deosebită numitorului - exact asta produs punctual vectori de direcție ai liniilor drepte:

Dacă , atunci numitorul formulei devine zero, iar vectorii vor fi ortogonali, iar liniile vor fi perpendiculare. De aceea s-a făcut o rezervă cu privire la neperpendicularitatea liniilor în formulare.

Pe baza celor de mai sus, este convenabil să formalizați soluția în doi pași:

1) Să calculăm produsul scalar al vectorilor de direcție ai liniilor:
, ceea ce înseamnă că liniile nu sunt perpendiculare.

2) Găsiți unghiul dintre liniile drepte folosind formula:

Folosind funcția inversă este ușor să găsiți unghiul în sine. În acest caz, folosim ciudățenia arctangentei (vezi. Grafice și proprietăți ale funcțiilor elementare):

Răspuns:

În răspuns indicăm valoarea exactă, precum și o valoare aproximativă (de preferință atât în ​​grade, cât și în radiani), calculată cu ajutorul unui calculator.

Ei bine, minus, minus, nu mare lucru. Iată o ilustrație geometrică:

Nu este surprinzător că unghiul s-a dovedit a avea o orientare negativă, deoarece în enunțul problemei primul număr este o linie dreaptă și „deșurubarea” unghiului a început tocmai cu ea.

Dacă doriți cu adevărat să obțineți un unghi pozitiv, trebuie să schimbați liniile, adică să luați coeficienții din a doua ecuație , și luați coeficienții din prima ecuație. Pe scurt, trebuie să începeți cu un direct .

Definiţie. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghi ascuțitîntre aceste linii drepte se va defini ca

Două drepte sunt paralele dacă k 1 = k 2. Două drepte sunt perpendiculare dacă k 1 = -1/ k 2.

Teorema. Dreptele Ax + Bу + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A 1 = λA, B 1 = λB sunt proporționali. Dacă și C 1 = λC, atunci liniile coincid. Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat

Perpendicular pe o dreaptă dată

Definiţie. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la punct la linie

Teorema. Dacă este dat un punct M(x 0, y 0), atunci distanța până la dreapta Ax + Bу + C = 0 este determinată ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza unei perpendiculare coborâte din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

(1)

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația dreptei care trece prin punct dat M 0 este perpendiculară pe o dreaptă dată. Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

Teorema a fost demonstrată.

Exemplu. Să se determine unghiul dintre drepte: y = -3 x + 7; y = 2 x + 1.

k1 = -3; k2 = 2; tgφ = ; φ= p /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Soluţie. Găsim: k 1 = 3/5, k 2 = -5/3, k 1* k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B (6; 5), C (12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Soluţie. Găsim ecuația laturii AB: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b. k = . Atunci y = . Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație: de unde b = 17. Total: .

Răspuns: 3 x + 2 y – 34 = 0.

Ecuația unei drepte care trece printr-un punct dat într-o direcție dată. Ecuația unei drepte care trece prin două puncte date. Unghiul dintre două linii drepte. Condiția de paralelism și perpendicularitate a două drepte. Determinarea punctului de intersecție a două drepte

1. Ecuația unei drepte care trece printr-un punct dat O(x 1 , y 1) într-o direcție dată, determinată de pantă k,

y - y 1 = k(x - x 1). (1)

Această ecuație definește un creion de linii care trec printr-un punct O(x 1 , y 1), care se numește centrul fasciculului.

2. Ecuația unei drepte care trece prin două puncte: O(x 1 , y 1) și B(x 2 , y 2), scris astfel:

Coeficientul unghiular al unei drepte care trece prin două puncte date este determinat de formula

3. Unghiul dintre liniile drepte OŞi B este unghiul cu care trebuie rotită prima linie dreaptă Oîn jurul punctului de intersecție al acestor linii în sens invers acelor de ceasornic până când acesta coincide cu a doua linie B. Dacă două drepte sunt date prin ecuații cu pantă

y = k 1 x + B 1 ,

y = k 2 x + B 2 , (4)

atunci unghiul dintre ele este determinat de formula

Trebuie remarcat faptul că la numărătorul fracției, panta primei linii este scăzută din panta celei de-a doua drepte.

Dacă ecuațiile unei drepte sunt date în formă generală

O 1 x + B 1 y + C 1 = 0,

O 2 x + B 2 y + C 2 = 0, (6)

unghiul dintre ele este determinat de formula

4. Condiții pentru paralelismul a două linii:

a) Dacă dreptele sunt date de ecuațiile (4) cu un coeficient unghiular, atunci condiția necesară și suficientă pentru paralelismul lor este egalitatea coeficienților lor unghiulari:

k 1 = k 2 . (8)

b) Pentru cazul în care dreptele sunt date prin ecuații în forma generală (6), o condiție necesară și suficientă pentru paralelismul lor este ca coeficienții pentru coordonatele curente corespunzătoare din ecuațiile lor să fie proporționali, i.e.

5. Condiții pentru perpendicularitatea a două drepte:

a) În cazul în care dreptele sunt date de ecuațiile (4) cu un coeficient unghiular, o condiție necesară și suficientă pentru perpendicularitatea lor este ca coeficienții lor unghiulari să fie inversi ca mărime și opuși ca semn, i.e.

Această condiție poate fi scrisă și în formă

k 1 k 2 = -1. (11)

b) Dacă ecuațiile de drepte sunt date în forma generală (6), atunci condiția pentru perpendicularitatea lor (necesară și suficientă) este să satisfacă egalitatea

O 1 O 2 + B 1 B 2 = 0. (12)

6. Coordonatele punctului de intersecție a două drepte se găsesc prin rezolvarea sistemului de ecuații (6). Liniile (6) se intersectează dacă și numai dacă

1. Scrieți ecuațiile dreptelor care trec prin punctul M, dintre care una este paralelă și cealaltă perpendiculară pe dreapta dată l.