Формулы механики. Механика делится на три раздела: кинематику, динамику и статику. В разделе кинематика рассматриваются такие кинематические характеристики движения, как перемещение, скорость, ускорение. Здесь необходимо использовать аппарат дифференциального и интегрального исчисления.

В основе классической динамики лежат три закона Ньютона. Здесь необходимо обратить внимание на векторный характер действующих на тела сил, входящих в эти законы.

Динамика охватывает такие вопросы, как закон сохранения импульса, закон сохранения полной механической энергии, работа силы.

При изучении кинематики и динамики вращательного движения следует обратить внимание на связь между угловыми и линейными характеристиками. Здесь вводятся понятия момента силы, момента инерции, момента импульса и рассматривается закон сохранения момента импульса.

Таблица основных формул по механике

Модуль вектора скорости:

где s - расстояние вдоль траектории движения (путь)

Скорость средняя (модуль):

Ускорение мгновенное:

Модуль вектора ускорения при прямолинейном движении:

Ускорение при криволинейном движении:

1) нормальное

где R - радиус кривизны траектории,

2) тангенциальное

3) полное (вектор)

4) (модуль)

Скорость и путь при движении:

1) равномерном

2) равнопеременном

V 0 - начальная скорость;

а > 0 при равноускоренном движении;

а < 0 при равнозамедленном движении.

Угловая скорость:

где φ - угловое перемещение.

Угловое ускорение:

Связь между линейными и угловыми величинами:

Импульс материальной точки:

где m - масса материальной точки.

Основное уравнение динамики поступательного движения (II закон Ньютона):

где F - результирующая сила, <>

Формулы сил:

трения Fтр

где μ - коэффициент трения,

N - сила нормального давления,

упругости Fупр

где k - коэффициент упругости (жесткости),

Δх - деформация (изменение длины тела).

Закон сохранения импульса для замкнутой системы , состоящей из двух тел:

где - скорости тел до взаимодействия;

Скорости тел после взаимодействия.

Потенциальная энергия тела:

1) поднятого над Землей на высоту h

2) упругодеформированного

Кинетическая энергия поступательного движения:

Работа постоянной силы:

где α - угол между направлением силы и направлением перемещения.

Полная механическая энергия:

Закон сохранения энергии:

силы консервативны

силы неконсервативны

где W 1 - энергия системы тел в начальном состоянии;

W 2 - энергия системы тел в конечном состоянии.

Момент инерции тел массой m относительно оси, проходящей через центр инерции (центр масс):

1) тонкостенного цилиндра (обруча)

где R - радиус,

2) сплошного цилиндра (диска)

4) стержня длиной l, если ось вращения перпендикулярна стержню и проходит через его середину

Момент инерции тела относительно произвольной оси (теорема Штейнера):

где - момент инерции тела относительно оси, проходящей через центр масс, d - расстояние между осями.

Момент силы(модуль):

где l - плечо силы.

Основное уравнение динамики вращательного движения:

где - угловое ускорение,

Результирующий момент сил.

Момент импульса:

1) материальной точки относительно неподвижной точки

где r - плечо импульса,

2) твердого тела относительно неподвижной оси вращения

Закон сохранения момента импульса:

где L 1 - момент импульса системы в начальном состоянии,

L 2 - момент импульса системы в конечном состоянии.

Кинетическая энергия вращательного движения:

Работа при вращательном движении

где Δφ - изменение угла поворота.

В рамках любого учебного курса изучение физики начинается с механики. Не с теоретической, не с прикладной и не вычислительной, а со старой доброй классической механики. Эту механику еще называют механикой Ньютона. По легенде, ученый гулял по саду, увидел, как падает яблоко, и именно это явление подтолкнуло его к открытию закона всемирного тяготения. Конечно, закон существовал всегда, а Ньютон лишь придал ему понятную для людей форму, но его заслуга – бесценна. В данной статье мы не будем расписывать законы Ньютоновской механики максимально подробно, но изложим основы, базовые знания, определения и формулы, которые всегда могут сыграть Вам на руку.

Механика – раздел физики, наука, изучающая движение материальных тел и взаимодействия между ними.

Само слово имеет греческое происхождение и переводится как «искусство построения машин» . Но до построения машин нам еще как до Луны, поэтому пойдем по стопам наших предков, и будем изучать движение камней, брошенных под углом к горизонту, и яблок, падающих на головы с высоты h.


Почему изучение физики начинается именно с механики? Потому что это совершенно естественно, не с термодинамического же равновесия его начинать?!

Механика – одна из старейших наук, и исторически изучение физики началось именно с основ механики. Помещенные в рамки времени и пространства, люди, по сути, никак не могли начать с чего-то другого, при всем желании. Движущиеся тела – первое, на что мы обращаем свое внимание.

Что такое движение?

Механическое движение – это изменение положения тел в пространстве относительно друг друга с течением времени.

Именно после этого определения мы совершенно естественно приходим к понятию системы отсчета. Изменение положения тел в пространстве относительно друг друга. Ключевые слова здесь: относительно друг друга . Ведь пассажир в машине движется относительно стоящего на обочине человека с определенной скоростью, и покоится относительно своего соседа на сиденье рядом, и движется с какой-то другой скоростью относительно пассажира в машине, которая их обгоняет.


Именно поэтому, для того, чтобы нормально измерять параметры движущихся объектов и не запутаться, нам нужна система отсчета - жестко связанные между собой тело отсчета, система координат и часов. Например, земля движется вокруг солнца в гелиоцентрической системе отсчета. В быту практически все свои измерения мы проводим в геоцентрической системе отсчета, связанной с Землей. Земля – тело отсчета, относительно которого движутся машины, самолеты, люди, животные.


Механика, как наука, имеет свою задачу. Задача механики – в любой момент времени знать положение тела в пространстве. Иными словами, механика строит математическое описание движения и находит связи между физическими величинами, его характеризующими.

Для того, чтобы двигаться далее, нам понадобится понятие “материальная точка ”. Говорят, физика – точная наука, но физикам известно, сколько приближений и допущений приходится делать, чтобы согласовать эту самую точность. Никто никогда не видел материальной точки и не нюхал идеального газа, но они есть! С ними просто гораздо легче жить.

Материальная точка – тело, размерами и формой которого в контексте данной задачи можно пренебречь.

Разделы классической механики

Механика состоит из нескольких разделов

  • Кинематика
  • Динамика
  • Статика

Кинематика с физической точки зрения изучает, как именно тело движется. Другими словами, этот раздел занимается количественными характеристиками движения. Найти скорость, путь – типичные задачи кинематики

Динамика решает вопрос, почему оно движется именно так. То есть, рассматривает силы, действующие на тело.

Статика изучает равновесие тел под действием сил, то есть отвечает на вопрос: а почему оно вообще не падает?

Границы применимости классической механики.

Классическая механика уже не претендует на статус науки, объясняющей все (в начале прошлого века все было совершенно иначе), и имеет четкие рамки применимости. Вообще, законы классической механики справедливы привычном нам по размеру мире (макромир). Они перестают работать в случае мира частиц, когда на смену классической приходит квантовая механика. Также классическая механика неприменима к случаям, когда движение тел происходит со скоростью, близкой к скорости света. В таких случаях ярко выраженными становятся релятивистские эффекты. Грубо говоря, в рамках квантовой и релятивистской механики – классическая механика, это частный случай, когда размеры тела велики, а скорость – мала. Подробнее об вы можете узнать из нашей статьи.


Вообще говоря, квантовые и релятивистские эффекты никогда никуда не деваются, они имеют место быть и при обычном движении макроскопических тел со скоростью, много меньшей скорости света. Другое дело, что действие этих эффектов так мало, что не выходит за рамки самых точных измерений. Классическая механика, таким образом, никогда не потеряет своей фундаментальной важности.

Мы продолжим изучение физических основ механики в следующих статьях. Для лучшего понимания механики Вы всегда можете обратиться к , которые в индивидуальном порядке прольют свет на темное пятно самой сложной задачи.

Механика - это наука о движущихся телах и о взаимодействиях между ними во время движения. При этом внимание уделяется тем взаимодействиям, в результате которых изменилось движение или произошла деформация тел. В статье мы расскажем Вам о том, что такое механика.

Механика бывает квантовая, прикладная (техническая) и теоретическая.

  1. Что такое квантовая механика? Это раздел физики, который описывает физические явления и процессы, действия которых сравнимо с величиной постоянной Планка.
  2. Что такое техническая механика? Это наука, раскрывающая принцип работы и устройство механизмов.
  3. Что такое теоретическая механика? Это наука и движение тел и общих законов движения.

Механика изучает движение всевозможных машин и механизмов, летательных аппаратов и небесных тел, океанические и атмосферные течения, поведение плазмы, деформацию тел, движение газов и жидкостей в природных условиях и технических системах, поляризующейся или намагничивающейся среды в электрических и магнитных полях, устойчивость и прочность технических и строительных сооружений, движение по дыхательному тракту воздуха и крови по сосудам.

Закон Ньютона лежит у основ, с помощью него описывают движение тел с малыми в сравнении со скоростью света скоростями.

В механике существуют следующие разделы:

  • кинематика (о геометрических свойствах движущихся тел не учитывая их массу и действующие силы);
  • статика (о нахождении тел в равновесии с использованием внешнего воздействия);
  • динамика (о движущихся телах при воздействии силы).

В механике существуют понятия, отражающие свойства тел:

  • материальная точка (тело, размеры которого можно не учитывать);
  • абсолютно твердое тело (тело, в котором расстояние между любыми точками неизменно);
  • сплошная среда (тело, молекулярной структурой которого пренебрегают).

Если вращением тела по отношению к центру масс в условиях рассматриваемой задачей можно пренебречь или же оно движется поступательно, тело приравнивается к материальной точке. Если не учитывать деформацию тела, то его нужно считать абсолютно недеформируемым. Газы, жидкости и деформируемые тела можно рассматривать как цельные среды, в которых частицы непрерывно заполняют весь объем среды. В этом случае, при исследования перемещения среды используется аппарат высшей математики, который применяется для непрерывных функций. Из фундаментальных законов природы - законов сохранения импульса, энергии и массы следуют уравнения, описывающие поведение сплошной среды. В механике сплошных сред содержится ряд самостоятельных разделов - аэро- и гидродинамика, теория упругости и пластичности, газовая динамика и магнитная гидродинамика, динамика атмосферы и водной поверхности, физико-химическая механика материалов, механика композитов, биомеханика, космическая гидроаэромеханика.

Теперь Вы знаете, что такое механика!

Кинематика - часть механики, в которой изучают движение материальной точки, не рассматривая причины, вызывающие это движение.

Механическим движением тела называется изменение его положения в пространстве относительно других тел с течением времени.

Основная задача механики - определить положение тела в пространстве в любой момент времени.

Движение, при котором все точки тела движутся одинаково, называется поступательным движением тела.

Тело, размерами которого в условиях изучаемого движения можно пренебречь, называется материальной точкой

Тело отсчета - это любое тело, условно принимаемое за неподвижное, относительно которого рассматривается движение других тел.

Часы - прибор, в котором периодическое движение используется для измерения промежутков времени.

Система отсчета представляет собой тело отсчета, связанную с ним систему координат и часы.

ТРАЕКТОРИЯ, ПУТЬ И ПЕРЕМЕЩЕНИЕ

Траектория - линия, которую описывает при своем движении материальная точка.

Путь - это длина траектория движения тела.

Перемещением тела называют вектор, соединяющий начальное положение тела с его конечным положением.

ПЕРЕМЕЩЕНИЕ И СКОРОСТЬ ПРИ ПРЯМОЛИНЕЙНОМ РАВНОМЕРНОМ ДВИЖЕНИИ

Прямолинейное движение - движение, траекторией которого является прямая линия.

Движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения называют равномерным движением .

Скорость равномерного прямолинейного движения -отношение вектора перемещения тела за любой промежуток времени к величине этого промежутка:

Зная скорость, можно найти перемещение за известный промежуток времени по формуле

При прямолинейном равномерном движении векторы скорости и перемещения имеют одинаковое направление.

Проекция перемещения на ось х : s x = x t . Так как s x = х -х 0 , то координата тела х = x 0 +s x . Аналогично для оси у: у = y 0 + s y .

В результате получаем уравнения прямолинейного равномерного движения тела в проекциях на оси х и у:

ОТНОСИТЕЛЬНОСТЬ ДВИЖЕНИЯ

Положение тела относительно, то есть оно различно в разных системах отсчета. Следовательно, относительно и его движение.

СКОРОСТЬ ПРИ НЕРАВНОМЕРНОМ ДВИЖЕНИИ

Неравномерным называется движение, при котором скорость тела со временем изменяется.

Средняя скорость неравномерного движения равна отношению вектора перемещения к времени нахождения в пути

Тогда перемещение при неравномерном движении

Мгновенной скоростью называется скорость тела в данный момент времени или в данной точке траектории.

УСКОРЕНИЕ. РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ

Равноускоренным называется движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково.

Ускорением тела называют отношение изменения скорости тела ко времени, за которое это изменение произошло.

Ускорение характеризует быстроту изменения скорости.

Ускорение - векторная величина. Оно показывает, как изменяется мгновенная скорость тела за единицу времени.

Зная начальную скорость тела и его ускорение, из формулы (1) можно найти скорость в любой момент времени:

Для этого уравнение нужно записать в проекциях на выбранную ось:

V x =V 0x + a x t

Графиком скорости при равноускоренном движении является прямая.

ПЕРЕМЕЩЕНИЕ И ПУТЬ ПРИ ПРЯМОЛИНЕЙНОМ РАВНОУСКОРЕННОМ ДВИЖЕНИИ

Предположим, что тело совершило перемещение за время t, двигаясь с ускорением. Если скорость изменяется от до и учитывая, что,

Используя график скорости, можно определить пройденный телом за известное время путь - он численно равен площади заштрихованной поверхности.

СВОБОДНОЕ ПАДЕНИЕ ТЕЛ

Движение тел в безвоздушном пространстве под действием силы тяжести называют свободным падением .

Свободное падение - это равноускоренное движение. Ускорение свободного падения в данном месте Земли постоянно для всех тел и не зависит от массы падающего тела: g = 9,8 м/с 2 .

Для решения различных задач из раздела "Кинематика" необходимы два уравнения:

Пример: Тело, двигаясь равноускоренно из состояния покоя, за пятую секунду прошло путь 18 м. Чему равно ускорение и какой путь прошло тело за 5 с?

За пятую секунду тело прошло путь s = s 5 - s 4 и s 5 и s 4 - расстояния, пройденные телом соответственно за 4 и 5 с.

Ответ: тело, двигаясь с ускорением 4 м/с 2 , за 5 с прошло 50 м.

Задачи и тесты по теме "Тема 1. "Механика. Основы кинематики"."

  • Материальная точка (Система отсчёта)

    Уроков: 3 Заданий: 9 Тестов: 1

  • Графики зависимости кинематических величин от времени при равноускоренном движении - Законы взаимодействия и движения тел: основы кинематики 9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Уроков: 1 Заданий: 9 Тестов: 1

Для выполнения заданий по теме "Механика" Вам нужно знать законы Ньютона, законы всемирного тяготения, Гука, сохранения импульса и энергии, а также основные формулы кинематики (уравнения координаты, скорости и перемещения).

Строго соблюдайте порядок изучения теоретического материала, предложенный в рекомендациях к курсу "Физика".

При выполнении задач по курсу "Механика" обратите внимание на знаки проекции векторов в выбранной системе отсчета. Это стандартная ошибка, которую допускают старшеклассники.

Не ленитесь рисовать схемы (чертежи) задач - это Вам может существенно облегчит решение задачи.

Анализируйте условия каждой конкретной задачи, сопоставляйте ответы с условием и реальностью.

Не придумывайте свои задачи с исходными данными!

Физика - одна из основных наук естествознания. Изучение физики в школе начинается с 7 класса и продолжается до конца обучения в школе. К этому времени у школьников уже должен быть сформирован должный математический аппарат, необходимый для изучения курса физики.

Темы школьной физики

В 7 классе идет поверхностное ознакомление и введение в курс физики. Рассматриваются основные физические понятия, изучается строение веществ, а также сила давления, с которой различные вещества действуют на другие. Кроме того изучаются законы Паскаля и Архимеда.

В 8 классе изучаются различные физические явления. Даются начальные сведения, о магнитном поле и явления, при которых оно возникает. Изучается постоянный электрический ток и основные законы оптики. Отдельно разбираются различные агрегатные состояния вещества и процессы, происходящие при переходе вещества из одного состояния в другое.

9 класс посвящен основным законам движения тел и взаимодействия их между собой. Рассматриваются основные понятия механических колебаний и волн. Отдельно разбирается тема звука и звуковых волны. Изучается основы теории электромагнитного поля и электромагнитные волны. Кроме того происходит знакомство с элементами ядерной физики и изучается строение атома и атомного ядра.

В 10 классе начинается углубленное изучение механики (кинематики и динамики) и законов сохранения. Рассматриваются основные виды механических сил. Происходит углубленное изучение тепловых явлений, изучается молекулярно-кинетическая теория и основные законы термодинамики. Повторяются и систематизируются основы электродинамики: электростатика, законы постоянного электрического тока и электрический ток в различных средах.

11 класс посвящен изучению магнитного поля и явления электромагнитной индукции. Подробно изучаются различные виды колебаний и волн: механические и электромагнитные. Происходит углубление знаний из раздела оптики. Рассматриваются элементы теории относительности и квантовая физика.

  • Ниже идет список классов с 7 по 11. Каждый класс содержит темы по физике, которые написаны нашими репетиторами. Данные материалы могут использоваться как учениками и их родителями, так и школьными учителями и репетиторами.