Плазматическая мембрана

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку

Плазматическая мембрана занимает особое положение, так как ограничивает клетку снаружи и непосредственно связана с внеклеточной средой. Она имеет толщину около 10 нм и представляет собой самую толстую из клеточных мембран. Основными компонентами являются белки (более 60%), липиды (около 40%) и углеводы (около 1%). Как и все остальные мембраны клетки синтезируется в каналах ЭПС.

Функции плазмалеммы.

Транспортная.

Плазматическая мембрана является полупроницаемой, т.е. через нее с различной скоростью проходят избирательно разные молекулы. Существует два способа переноса веществ через мембрану: пассивный и активный транспорт .

Пассивный транспорт. Пассивный транспорт или диффузия не требует затрат энергии. Незаряженные молекулы диффундируют по градиенту концентрации, транспорт заряженных молекул зависит от градиента концентрации протонов водорода и трансмембранной разности потенциалов, которые объединяются в электрохимический протонный градиент. Как правило, внутренняя цитоплазматическая поверхность мембраны несет отрицательный заряд, что облегчает проникновение в клетку положительно заряженных ионов. Различают два типа диффузии: простую и облегченную.

Простая диффузия характерна для небольших нейтральных молекул (Н 2 О, СО 2 , О 2), а также для гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков-переносчиков по принципу унипорта .

Облегченная диффузия отличается высокой избирательностью, так как белок-переносчик имеет центр связывания, комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии следующий: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт. Такой транспорт имеет место в случае, когда перенос осуществляется против градиента концентрации. Он требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТФ. Для активного транспорта, кроме источника энергии, необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na и К + через клеточную мембрану. Эта система называется Na + - К*-насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация ионов К + выше, чем ионов Na*.

Градиент концентрации обоих ионов поддерживается путем переноса К + внутрь клетки, a Na + наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na + -К + -насос представляет собой белок - транспортную АТФазу. Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится 3 иона Na + , а в обратном направлении - 2 иона К + , при этом используется энергия молекулы АТФ. Существуют транспортные системы для переноса ионов кальция (Са 2+ -АТФазы), протонные насосы (Н + -АТФазы) и др.

Активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества называется симпортом . Транспортная АТФаза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт (котранспорт) могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи, при этом используется энергия градиента концентрации ионов Na + , создаваемого Na + , K + -АТФазой.

Еще 2 разновидности транспорта - эндоцитоз и экзоцитоз.

Эндоцитоз - захват клеткой крупных частиц. Существует несколько способов зндоцитоза: пиноцитоз и фагоцитоз. Обычно под пиноцитозом понимают захват клеткой жидких коллоидных частиц, под фагоцитозом - захват корпускул (более плотных и крупных частиц вплоть до других клеток). Механизм пино- и фагоцитоза различен.

В общем виде поступление в клетку твердых частиц или капель жидкости извне называется гетерофагией. Этот процесс наиболее широко распространен у простейших, но очень важен и у человека (равно как и у других млекопитающих). Гетерофагия играет существенную роль в защите организма (сегментоядерные нейтрофилы - гранулоциты; макрофагоциты), перестройке костной ткани (остеокласты), образовании тироксина фолликулами щитовидной железы, реабсорбции белка и других макромолекул в проксимальном отделе нефрона и других процессах.

Пиноцитоз.

Для того чтобы внешние молекулы поступили в клетку, должны быть сначала связаны рецепторами гликокаликса (совокупность молекул, связанных с поверхностными белками мембраны) (рис.).

В месте такого связывания под плазмалеммой обнаруживаются молекулы белка клатрина. Плазмалемма вместе с присоединенными извне молекулами и подстилаемая со стороны цитоплазмы клатрином начинает впячиваться. Впячивание становится все глубже, его края сближаются и затем смыкаются. В результате от плазмалеммы отщепляется пузырек, несущий в себе захваченные молекулы. Клатрин на его поверхности выглядит на электронных мнкрофотографиях как неровная каемка, поэтому такие пузырьки получили название окаймленных.

Клатрин не дает возможности пузырькам присоединятся к внутриклеточным мембранам. Поэтому окаймленные пузырьки могут беспрепятственно транспортироваться в клетке именно к тем участкам цитоплазмы, где должно использоваться их содержимое. Так к ядру доставляются, в частности, стероидные гормоны. Однако обычно окаймленные пузырьки сбрасывают кайму вскоре после отщепления от плазмалеммы. Клатрин переносится к плазмалемме и снова может участвовать в реакциях эндоцитоза.

У поверхности клетки в цитоплазме имеются более постоянные пузырьки - эндосомы. Окаймленные пузырьки сбрасывают клатрин и сливаются с эндосомами, при этом объем и поверхность эндосом увеличивается. Затем избыточная часть эндосом отщепляется в виде нового пузырька, в котором нет поступивших в клетку веществ, они остаются в эндосоме. Новый пузырек направляется к поверхности клетки и сливается с мембраной. В результате убыль плазмалеммы, возникшая при отщеплении окаймленного пузырька, восстанавливается, при этом в плазмалемму возвращаются и ее рецепторы.

Эндосомы погружаются в цитоплазму и сливаются с мембранами лизосомы. Поступившие вещества внутри такой вторичной лизосомы подвергаются различным биохимическим превращениям. По завершении процесса мембрана лизосомы может распадаться на фрагменты, а продукты распада и содержимого лизосомы становятся доступными для внутриклеточных метаболических реакций. Так, например, аминокислоты связываются тРНК и доставляются к рибосомам, а глюкоза может поступать в комплекс Гольджи, либо в канальцы агранулярной ЭПС.

Хотя эндосомы и не обладают клатриновой каймой, не все они сливаются с лизосомами. Часть из них направляется от одной поверхности клетки к другой (если клетки образуют эпителиальный пласт). Там мембрана эндосомы сливается с плазмолеммой и содержимое выводится вовне. В результате вещества переносятся через клетку из одной среды в другую без изменений. Этот процесс называют трансцитозом . Путем трансцитоза могут переноситься и белковые молекулы, в частности иммуноглобулины.

Фагоцитоз.

Если крупная частица имеет на поверхности молекулярные группировки, которые могут распознаваться рецепторами клетки, она связывается. Далеко не всегда чужеродные частицы сами обладают такими группировками. Однако, попадая в организм, они окружаются молекулами иммуноглобулинов (опсонинами), которые всегда содержатся и в крови, и в межклеточной среде. Иммуноглобулины всегда распознаются клетками-фагоцитами.

После того как покрывающие чужеродную частицу опсонины связались с рецепторами фагоцита, активируется его поверхностный комплекс. Актиновые микрофиламенты начинают взаимодействовать с миозином, и конфигурация поверхности клетки изменяется. Вокруг частицы вытягиются выросты цитоплазмы фагоцита. Они охватывают поверхность частицы и объединяются над ней. Наружные листки выростов сливаются, замыкая поверхность клетки.

Глубокие листки выростов образуют мембрану вокруг поглощенной частицы - формируется фагосома. Фагосома сливается с лизосомами, в результате чего возникает их комплекс - гетеролизосома (гетеросома, или фаголизосома). В ней происходит лизис захваченных компонентов частицы. Часть продуктов лизиса выводится из гетеросомы и утилизируется клеткой, часть же может оказаться не поддающейся действию лизосомных ферментов. Эти остатки образуют остаточные тельца.

Потенциально все клетки обладают способностью к фагоцитозу, но в организме лишь некоторые специализируются в этом направлении. Таковы нейтрофильные лейкоциты и макрофаги.

Экзоцитоз.

Это выведение веществ из клетки. Сначала крупномолекулярные соединения сегрегируются в комплексе Голъджи в виде транспортных пузырьков. Последние с участием микротрубочек направляются к клеточной поверхности. Мембрана пузырька встраивается в плазмалемму, и содержимое пузырька оказывается за пределами клетки (рис.) Слияние пузырька с плазмалеммой может совершать без каких-либо дополнительных сигналов. Такой экзоцитоз называют конститутивным. Так выводится из клетгсд большинство продуктов ее собственного метаболизма. Ряд клеток, однако, предназначен для синтеза специальных соединений - секретов, которые используются в организме в других его частях. Для того чтобы транспортный пузырек с секретом слился с плазмалеммои, необходимы сигналы извне. Только тогда произойдет слияние и секрет освободится. Такой экзоцитоз называют регулируемым . Сигнальные молекулы, способствующие выведению секретов, называются либеринами (рилизинг-факторами), а препятствующие выведению - статинами.

Рецепторные функции.

В основном обеспечиваются гликопротеинами, расположенными на поверхности плазмалеммы и способными связываться со своими лигандами. Лиганд соответствует своему рецептору как ключ - замку. Связывание лиганда с рецептором вызывает изменение конформации полипептида. При таком изменении трансмембранного белка устанавливается сообщение между вне- и внутриклеточной средой.

Типы рецепторов.

Рецепторы, связанные с белковыми ионными каналами. Они взаимодействуют с сигнальной молекулой, временно открывающей или закрывающей канал для прохождения ионов. (Например, рецептор нейромедиатора ацетилхолина - белок, состоящий из 5 субъединиц, образующих ионный канал. В отсутствии ацетилхолина канал закрыт, а после присоединения открывается и пропускает ионы натрия).

Каталитические рецепторы. Состоят из внеклеточной части (собственно рецептор) и внутриклеточной цитоплазматической части, которая функционирует как фермент пролинкиназа (например, рецепторы гормона роста).

Рецепторы, связанные с G-белками. Это трансмембранные белки, состоящие из рецептора, взаимодействующего с лигандом, и G-белка (гуанозинтрифосфат-связанного регуляторного белка), который передает сигнал на связанный с мембраной фермент (аденилатциклазу) или на ионный канал. В результате активируется циклический АМФ или ионы кальция. (Так работает аденилатциклазная система. Например, в клетках печени находится рецептор гормона инсулина. Надклеточная часть рецептора связывается с инсулином. Это вызывает активацию внутриклеточной части - фермента аденилатциклазы. Она синтезирует из АТФ циклический АМФ, регулирующий скорость различных внутриклеточных процессов, вызывая активацию или ингибирование тех или иных ферментов метаболизма).

Рецепторы, воспринимающие физические факторы. Например, фоторецепторный белок родопсин. При поглощении света он меняет свою конформацию и возбуждает нервный импульс.

Плазматическая мембрана выполняет ряд важнейших функций:

1) Барьерная. Барьерная функция плазматической мембраны заключается в ограничении свободной диффузии веществ из клетки в клетку, предотвращении утечки водорастворимого содержимого клетки. Но поскольку клетка должна получать необходимые питательные вещества, выделять конечные продукты метаболизма, регулировать внутриклеточные концентрации ионов, то в ней образовались специальные механизмы переноса веществ через клеточную мембрану.

2) Транспортная. К транспортной функции относится обеспечение поступления и выведения различных веществ в клетку и из клетки. Важное свойство мембраны - избирательная проницаемость , или полупроницаемость. Она легко пропускает воду и водорастворимые газы и отталкивает полярные молекулы, такие как глюкоза или аминокислоты.

Существует несколько механизмов транспорта веществ через мембрану:

пассивный транспорт;

активный транспорт;

транспорт в мембранной упаковке.

Пассивный транспорт. Диффузия - это движение частиц среды, приводящее к переносу вещества из зоны, где его концентрация высока в зону с низкой концентрацией. При диффузионном транспорте мембрана функционирует как осмотический барьер. Скорость диффузии зависит от величины молекул и их относительной растворимости в жирах. Чем меньше размеры молекул и чем более они жирорастворимы (липофильны), тем быстрее произойдет их перемещение через липидный бислой. Диффузия может быть нейтральной (перенос незаряженных молекул) и облегченной (с помощью специальных белков переносчиков). Скорость облегченной диффузии выше, чем нейтральной. Максимальной проникающей способностью обладает вода, так как ее молекулы малы и незаряжены. Диффузия воды через клеточную мембрану называется осмосом. Предполагается, что в клеточной мембране для проникновения воды и некоторых ионов существуют специальные "поры". Число их невелико, а диаметр составляет около 0,3-0,8 нм. Наиболее быстро диффундируют через мембрану легко растворимые в липидном бислое молекулы, например О, и незаряженные полярные молекулы небольшого диаметра (СО, мочевина).

Перенос полярных молекул (сахаров, аминокислот), осуществляемый с помощью специальных мембранных транспортных белков называется облегченной диффузией. Такие белки обнаружены во всех типах биологических мембран, и каждый конкретный белок предназначен для переноса молекул определенного класса. Транспортные белки являются трансмембранными, их полипептидная цепь пересекает липидный бислой несколько раз, формируя в нем сквозные проходы. Это обеспечивает перенос специфических веществ через мембрану без непосредственного контакта с ней. Существует два основных класса транспортных белков: белки-переносчики (транспортеры) и каналообразующие белки (белки-каналы). Белки-переносчики переносят молекулы через мембрану, предварительно изменяя их конфигурацию. Каналообразующие белки формируют в мембране заполненные водой поры. Когда поры открыты, молекулы специфических веществ (обычно неорганические ионы подходящего размера и заряда) проходят сквозь них. Если молекула транспортируемого вещества не имеет заряда, то направление транспорта определяется градиентом концентрации. Если молекула заряжена, то на ее транспорт, кроме градиента концентрации, влияет и электрический заряд мембраны (мембранный потенциал). Внутренняя сторона плазмалеммы обычно заряжена отрицательно по отношению к наружной. Мембранный потенциал облегчает проникновение в клетку положительно заряженных ионов и препятствует прохождению ионов заряженных отрицательно.

Активный транспорт. Активным транспортом называется перенос веществ против электрохимического градиента. Он всегда осуществляется белками-транспортерами и тесно связан с источником энергии. В белках-переносчиках имеются участки связывания с транспортируемым веществом. Чем больше таких участков связывается с веществом, тем выше скорость транспорта. Селективный перенос одного вещества называется унипортом. Перенос нескольких веществ осуществляют котранспортные системы. Если перенос идет в одном направлении - это симпорт, если в противоположных - антипорт. Так, например, глюкоза из внеклеточной жидкости в клетку переносится унипортно. Перенос же глюкозы и Na 4 из полости кишечника или канальцев почек соответственно в клетки кишечника или кровь осуществляется симпортно, а перенос С1~ и НСО" антипортно. Предполагается, что при переносе возникают обратимые конформационные изменения в транспортере, что и позволяет премещать соединенные с ним вещества.

Примером белка-переносчика, использующего для транспорта веществ энергию выделившуюся при гидролизе АТФ, является Na + + насос, обнаруженный в плазматической мембране всех клеток. Na + -K насос работает по принципу антипорта, перекачивая Na" из клетки и К т внутрь клетки против их электрохимических градиентов. Градиент Na + создает осмотическое давление, поддерживает клеточный объем и обеспечивает транспорт сахаров и аминокислот. На работу этого насоса тратится треть всей энергии необходимой для жизнедеятельности клеток. При изучении механизма действия Na + -K + насоса было установлено, что он является ферментом АТФазой и трансмембранным интегральным белком. В присутствии Na + и АТФ под действием АТФа-зы от АТФ отделяется концевой фосфат и присоединяется к остатку аспарагиновой кислоты на молекуле АТФазы. Молекула АТФазы фосфорилируется, изменяет свою конфигурацию и Na + выводится из клетки. Вслед за выведением Na из клетки всегда происходит транспорт К" в клетку. Для этого от АТФазы в присутствии К отщепляется ранее присоединенный фосфат. Фермент дефосфорилируется, восстанавливает свою конфигурацию и К 1 "закачивается" в клетку.

АТФаза образована двумя субъединицами, большой и малой. Большая субъединица состоит из тысячи аминокислотных остатков, пересекающих бислой несколько раз. Она обладает каталитической активностью и способна обратимо фосфорилироваться и дефосфорилироваться. Большая субъединица на цитоплазматической стороне имеет участки для связывания Na + и АТФ, а на внешней стороне -участки для связывания К + и уабаина. Малая субъединица является гликопротеином и функция его пока не известна.

Na + -K насос обладает электрогенным эффектом. Он удаляет три положительно заряженных иона Na f из клетки и вносит в нее два иона К В результате через мембрану течет ток, образующий электрический потенциал с отрицательным значением во внутренней части клетки по отношению к ее наружной поверхности. Na"-K + насос регулирует клеточный объем, контролирует концентрацию веществ внутри клетки, поддерживает осмотическое давление, участвует в создании мембранного потенциала.

Транспорт в мембранной упаковке. Перенос через мембрану макромолекул (белков, нуклеиновых кислот, полисахаридов, липопротеидов) и других частиц осуществляется посредством последовательного образования и слияния окруженных мембраной пузырьков (везикул). Процесс везикулярного транспорта проходит в две стадии. Вначале мембрана пузырька и плазмалемма слипаются, а затем сливаются. Для протекания 2 стадии необходимо чтобы молекулы воды были вытеснены взаимодействующими липидными бислоями, которые сближаются до расстояния 1-5 нм. Считается, что данный процесс активизируют специальные белки слияния (они выделены пока только у вирусов). Везикулярный транспорт имеет важную особенность - поглощенные или секретируемые макромолекулы, находящиеся в пузырьках, обычно не смешиваются с другими макромолекулами или органеллами клетки. Пузырьки могут сливаться со специфическими мембранами, что и обеспечивает обмен макромолекулами между внеклеточным пространством и содержимым клетки. Аналогично происходит перенос макромолекул из одного компартмента клетки в другой.

Транспорт макромолекул и частиц в клетку называется эндоцитозом. При этом транспортируемые вещества обволакиваются частью плазматической мембраны, образуется пузырек (вакуоль), который перемещается внутрь клетки. В зависимости от размера образующихся пузырьков различают два вида эндоцитоза - пиноцитоз и фагоцитоз.

Пиноцитоз обеспечивает поглощение жидкости и растворенных веществ в виде небольших пузырьков (d=150 нм). Фагоцитоз - это поглощение больших частиц, микроорганизов или обломков органелл, клеток. При этом образуются крупные пузырьки, фагосомы или вакуоли (d-250 нм и более). У простейших фагоцитарная функция - форма питания. У млекопитающих фагоцитарная функция осуществляется макрофагами и нейтрофилами, защищающими организм от инфекции путем поглощения вторгшихся микробов. Макрофаги участвуют также в утилизации старых или поврежденных клеток и их обломков (в организме человека макрофаги ежедневно поглощают более 100 старых эритроцитов). Фагоцитоз начинается только тогда, когда поглощаемая частица свяжется с поверхностью фагоцита и активирует специализированные рецепторные клетки. Связывание частиц со специфическими рецепторами мембраны вызывает образование псевдоподии, которые обволакивают частицу и, сливаясь краями, образуют пузырек -фагосому. Образование фагосомы и собственно фагоцитоз происходит лишь в том случае, если в процессе обволакивания частица постоянно контактирует с рецепторами плазмалеммы, как бы "застегивая молнию".

Значительная часть материала, поглощенного клеткой путем эндоцитоза, заканчивает свой путь в лизосомах. Большие частицы включаются в фагосомы, которые затем сливаются с лизосомами и образуют фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в эндосомы, которые также сливаются с лизосомами, образуя эндолизосомы. Присутствующие в лизосомах разнообразные гидролитические ферменты быстро разрушают макромолекулы. Продукты гидролиза (аминокислоты, сахара, нуклеотиды) транспортируются из лизосом в цитозоль, где используются клеткой. Большинство мембранных компонентов эндоцитозных пузырьков из фагосом и эндосом возвращаются с помощью экзоцитоза к плазматической мембране и там повторно утилизируются. Основным биологическим значением эндоцитоза является получение строительных блоков за счет внутриклеточного переваривания макромолекул в лизосомах.

Поглощение веществ в эукариотических клетках начинается в специализированных областях плазматической мембраны, так называемых окаймленных ямках. На электронных микрофотографиях ямки выглядят как впячивания плазматической мембраны, цитоплазматическая сторона которых покрыта волокнистым слоем. Слой как бы окаймляет небольшие ямки плазмалеммы. Ямки занимают около 2% общей поверхности клеточной мебраны эукариотов. В течении минуты ямки растут, все глубже впячиваются, втягиваются в клетку и затем, сужаясь у основания, отщепляются, образуя окаймленные пузырьки. Установлено, что из плазматической мембраны фибробластов в течении одной минуты отщепляется примерно четвертая часть мембраны в виде окаймленных пузырьков. Пузырьки быстро теряют свою кайму и приобретают способность сливаться с лизосомой.

Эндоцитоз может быть неспецифическим (конститутивным) и специфическим (рецепторным). При неспецифическом эндоцитозе клетка захватывает и поглощает совершенно чуждые ей вещества, например, частицы сажи, красители. Вначале происходит осаждение частиц на гликокаликсе плазмалеммы. Особенно хорошо осаждаются (адсорбируются) положительно заряженные группы белков, так как гликокаликс несет отрицательный заряд. Затем изменяется морфология клеточной мембраны. Она может либо погружаться, образуя впячивания (инвагинации), либо, наоборот, формировать выросты, которые как бы складываются, отделяя небольшие объемы жидкой среды. Образование инвагинаций более характерно для клеток кишечного эпителия, амеб, а выростов - для фагоцитов и фибробластов. Заблокировать эти процессы можно ингибиторами дыхания. Образовавшиеся пузырьки - первичные эндосомы, могут сливаться между собой, увеличиваясь в размере. В дальнейшем они соединяются с лизосомами, превращаясь в эндолизосому - пищеварительную вакуоль. Интенсивность жидкофазного неспецифического пиноцитоза довольно высока. Макрофаги образуют до 125, а клетки эпителия тонкого кишечника до тысячи пиносом в минуту. Обилие пиносом приводит к тому, что плазмалемма быстро тратится на образование множества мелких вакуолей. Восстановление мембраны идет довольно быстро при рециклизации в процессе экзоцитоза за счет возвращения вакуолей и их встраивания в плазмалемму. У макрофагов вся плазматическая мембрана замещается за 30 минут, а у фибробластов за 2 часа.

Более эффективным способом поглощения из внеклеточной жидкости специфических макромолекул является специфический эндоцитоз (опосредуемый рецепторами). Макромолекулы при этом связываются с комплементарными рецепторами на поверхности клетки, накапливаются в окаймленной ямке, и затем, образуя эндосому, погружаются в цитозоль. Рецепторный эндоцитоз обеспечивает накопление специфических макромолекул у своего рецептора. Молекулы, которые связываются на поверхности плазмалеммы с рецептором, называются лигандами. При помощи рецепторного эндоцитоза во многих животных клетках идет поглощение холестерина из внеклеточной среды.

Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). В этом случае вакуоли подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются и содержимое вакуоли поступает в окружающую среду. У некоторых простейших места на клеточной мембране для экзоцитоза заранее предопределены. Так, в плазматической мембране некоторых ресничных инфузорий есть определенные участки с правильным расположением крупных глобул интегральных белков. У мукоцист и трихоцист инфузорий полностью готовых к секреции, на верхней части плазмалеммы имеется венчик из глобул интегральных белков. Этими участками мембраны мукоцист и трихоцист соприкасаются с поверхностью клетки. Своеобразный экзоцитоз наблюдается в нейтрофилах. Они способны при определенных условиях выбрасывать в окружающую среду свои лизосомы. При этом в одних случаях образуются небольшие выросты плазмалеммы, содержащие лизосомы, которые затем отрываются и переходят в среду. В других случаях наблюдается инвагинация плазмалеммы вглубь клетки и захват ею лизосом, распложенных далеко от поверхности клетки.

Процессы эндоцитоза и экзоцитоза осуществляется при участии связанной с плазмолеммой системы фибриллярных компонентов цитоплазмы.

Рецепторная функция плазмалеммы. Это одна из главных, универсальных для всех клеток, является рецепторная функция плазмалеммы. Она определяет взаимодействие клеток друг с другом и с внешней средой..

Все многообразие информационных межклеточных взаимодействий схематически можно представить как цепь последовательных реакций сигнал-рецептор-вторичный посредник-ответ (концепция сигнал-ответ). Передачу информации от клетки к клетке осуществляют сигнальные молекулы, которые вырабатываются в одних клетках и специфически влияют на другие, чувствительные к сигналу (клетки-мишени). Сигнальная молекула - первичный посредник связывается с находящимися на клетках-мишенях рецепторами, реагирующими только на определенные сигналы. Сигнальные молекулы - лиганды - подходят к своему рецептору как ключ к замку. Лигандами для мембранных рецепторов (рецепторов плазмалеммы) являются гидрофильные молекулы, пептидные гормоны, нейромедиаторы, цитокины, антитела, а для ядерных рецепторов - жирорастворимые молекулы, стероидные и тиреоидные гормоны, витамин Д В качестве рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса - полисахариды и гликопротеиды. Считается, что чувствительные к отдельным веществам участки, разбросаны по поверхности клетки или собраны в небольшие зоны. Так, на поверхности прокариотических клеток и клеток животных имеется ограниченное число мест с которыми могут связываться вирусные частицы. Мембранные белки (переносчики и каналы) узнают, взаимодействуют и переносят лишь определенные вещества. Клеточные рецепторы участвуют в передаче сигналов с поверхности клетки внутрь ее. Разнообразие и специфичность наборов рецепторов на поверхности клеток ведет к созданию очень сложной системы маркеров, позволяющих отличать свои клетки от чужих. Сходные клетки взаимодействуют друг с другом, поверхности их могут слипаться (конъюгация у простейших, образование тканей у многоклеточных). Клетки не воспринимающие маркеры, а также отличающиеся набором детерминантных маркеров уничтожаются или отторгаются. При образовании комплекса рецептор-лиганд активируются трансмембранные белки: белок преобразователь, белок усилитель. В результате рецептор изменяет свою конформацию и взаимодействует с находящимся в клетке предшественником вторичного посредника - мессенджером. Мессенджерами могут быть ионизированный кальций, фосфолипаза С, аденилатциклаза, гуанилатциклаза. Под влиянием мессенджера происходит активация ферментов, участвующих в синтезе циклических монофосфатов - АМФ или ГМФ. Последние изменяют активность двух типов ферментов протеинкиназ в цитоплазме клетки, ведущих к фосфорилированию многочисленных внутриклеточных белков.

Наиболее распространено образование цАМФ, под действием которого усиливается секреция ряда гормонов - тироксина, кортизона, прогестерона, увеличивается распад гликогена в печени и мышцах, частота и сила сердечных сокращений, остеодеструкция, обратное всасывание воды в канальцах нефрона.

Активность аденилатциклазной системы очень велика - синтез цАМФ приводит к десяти тысячному усилению сигнала.

Под действием цГМФ увеличивается секреция инсулина поджелудочной железой, гистамина тучными клетками, серотонина тромбоцитами, сокращается гладкомышечная ткань.

Во многих случаях при образовании комплекса рецептор-лиганд происходит изменение мембранного потенциала, что в свою очередь приводит к изменению проницаемости плазмалеммы и метаболических процессов в клетке.

На плазматической мембране находятся специфические рецепторы, реагирующие на физические факторы. Так, у фотосинтезирующих бактерий на поверхности клетки располагаются хлорофиллы, реагирующие на свет. У светочувствительных животных в плазматической мембране находится целая система фогорецепторных белков-родопсинов, с помощью которых световой раздражитель трансформируется в химический сигнал, а затем электрический импульс.

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.

Основу структурной организации клетки составляют биологические мембраны. Плазматическая мембрана (плазмалемма) — это мембрана, окружающая цитоплазму живой клетки. Мембраны состоят из липидов и белков. Липиды (в основном фосфолипиды) образуют двойной слой, в котором гидрофобные «хвосты» молекул обращены внутрь мембраны, а гидрофильные — к её поверхностям. Молекулы белков могут располагаться на внешней и внут-ренней поверхности мембраны, могут частично погружать-ся в слой липидов или пронизывать её насквозь. Большая часть погруженных белков мембран — ферменты. Это жид-костно-мозаичная модель строения плазматической мем-браны. Молекулы белка и липидов подвижны, что обеспе-чивает динамичность мембраны. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов (гликокаликс), располагающихся на внешней поверхности мембраны. Набор белков и углеводов на поверхности мем-браны каждой клетки специфичен и является своеобраз-ным указателем типа клеток.

Функции мембраны:

  1. Разделительная. Она заключается в образовании барьера между внутренним содержимым клетки и внешней средой.
  2. Обеспечение обмена веществ между цитоплазмой и внешней средой. В клетку поступают вода, ионы, неорганические и органические молекулы (транспортная функ-ция). Во внешнюю среду выводятся продукты, образован-ные в клетке (секреторная функция).
  3. Транспортная. Транспорт через мембрану может проходить разными путями. Пассивный транспорт осуществляется без затрат энергии, путем простой диффузии, осмоса или облегченной диффузии с помощью белков- переносчиков. Активный транспорт — с помощью белков-переносчиков, и он требует затрат энергии (например, натрий-калиевый насос). Материал с сайта

Крупные молекулы биополимеров попадают внутрь клетки в результате эндоцитоза. Его разделяют на фагоци-тоз и пиноцитоз. Фагоцитоз — захват и поглощение клет-кой крупных частиц. Явление впервые было описано И.И. Мечниковым. Сначала вещества прилипают к плаз-матической мембране, к специфическим белкам-рецеп-торам, затем мембрана прогибается, образуя углубление.

Образуется пищеварительная вакуоль. В ней переварива-ются поступившие в клетку вещества. У человека и живот-ных к фагоцитозу способны лейкоциты. Лейкоциты по-глощают бактерии и другие твердые частицы.

Пиноцитоз — процесс захвата и поглощения капель жидкости с растворенными в ней веществами. Вещества прилипают к белкам мембраны (рецепторам), и капля рас-твора окружается мембраной, формируя вакуоль. Пиноци-тоз и фагоцитоз происходят с затратой энергии АТФ.

  1. Секреторная. Секреция — выделение клеткой ве-ществ, синтезированных в клетке, во внешнюю среду. Гормоны, полисахариды, белки, жировые капли, заключа-ются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Мембраны сливаются, и содержимое пу-зырька выводится в среду, окружающую клетку.
  2. Соединение клеток в ткани (за счет складчатых вы-ростов).
  3. Рецепторная. В мембранах имеется большое число рецепторов — специальных белков, роль которых заключа-ется в передаче сигналов извне внутрь клетки.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • плазматическая мембрана строение и функции
  • строение и функции плазматический мембраны
  • плазматическая мембрана строение и функции кратко
  • плазматическая мембрана кратко
  • клеточная мембрана строение и функции кратко