В конце XIX -- начале XX в. открыты В. Рентгеном - X-лучи (рентгеновские лучи), А. Беккерелем - явление радиоактивности, Дж. Томсоном -электрон. Однако классическая физика не сумела объяснить эти явления.

Теория относительности А. Эйнштейна потребовала коренного пересмотра понятии пространства и времени. Специальные опыты подтвердили справедливость гипотезы Дж. Максвелла об электромагнитной природе света. Можно было предположить, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но это предположение нужно было подтвердить сопоставлением теоретических и экспериментальных данных.

Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела , т. е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

Австрийские физики И. Стефан и Л. Больцман экспериментально установили, что полная энергия Е, излучаемая за 1 с абсолютно черным телом с единицы поверхности, пропорциональна четвертой степени абсолютный температуры Т:

Где s = 5,67 . 10 -8 Дж/(м 2. К-с)-постоянная Стефана-Больцмана.

Этот закон был назван законом Стефана - Больцмана. Он позволил вычислить энергию излучения абсолютно черного тела по известной температуре.

Гипотеза Планка

Стремясь преодолеть затруднения классической теории при объяснении излучения черного тела, М. Планк в 1900 г. высказал гипотезу: атомы испускают электромагнитную энергию от дельными порциями -квантами . Энергия Е

где h=6,63 . 10 -34 Дж . с-постоянная Планка.

Иногда удобно измерять энергию и постоянную Планка вэлектронвольтах.

Тогда h=4,136 . 10 -15 эВ . с . В атомной физике употребляется также величина

(1 эВ - энергия, которую приобретает элементарный заряд, проходя ускоряющую разность потенциалов 1 В. 1 эВ=1,6 . 10 -19 Дж).

Таким образом, М. Планк указал путь выхода из трудностей, с которыми столкнулась теория теплового излучения, после чего начала развиваться современная физическая теория, называемая квантовой физикой.

Фотоэффект

Фотоэффектом называется испускание электронов с поверхности металла под действием света.В 1888 г. Г. Герц обнаружил, что при облучении ультрафиолетовыми лучами электродов, находящихся под высоким напряжением, разряд возникает при большем расстоянии между электродами, чем без облучения.

Фотоэффект можно наблюдать в следующих случаях:

1. Цинковую пластину, соединенную с электроскопом, заряжают отрицательно и облучают ультрафиолетовым светом. Она быстро разряжается. Если же ее зарядить положительно, то заряд пластины не изменится.

2. Ультрафиолетовые лучи, проходящие через сетчатый положительныйэлектрод, попадают на отрицательно заряженную цинковую пластину и выбивают из нее электроны, которые устремляются к сетке, создавая фототек, регистрируемый чувствительным гальванометром.

Законы фотоэффекта

Количественные закономерности фотоэффекта (1888-1889) были установлены А. Г. Столетовым.

Он использовал вакуумный стеклянный баллон с двумя электродами. Через кварцевое стекло на катод попадает свет (в том числе ультрафиолетовое излучение). С помощью потенциометра можно регулировать напряжение между электродами. Ток в цепи измерялся миллиамперметром.

В результате облучения электроны, выбитые из электрода, могут достигнуть противоположного электрода и создать некоторый начальный ток. При увеличении напряжения, поле разгоняет электроны, и ток увеличивается, достигая насыщения, при котором все выбитые электроны достигают анода.

Если приложить обратное напряжение, то электроны тормозятся и ток уменьшается. При так называемом запирающем напряжении фототок прекращается. Согласно закону сохранения энергии, где m- масса электрона, а υ max - максимальная скорость фотоэлектрона.

Первый закон

Исследуя зависимость силы тока в баллоне от напряжения между электродами при постоянном световом потоке на один из них, он установил первый закон фотоэффекта.

Фототок насыщения пропорционален световому потоку, падающему на металл .

Т.к. сила тока определяется величиной заряда, а световой поток - энергией светового пучка, то можно сказать:

ч исло электронов, выбиваемых за 1 с из вещества, пропорционально интенсивности света, падающего на это вещество.

Второй закон

Изменяя условия освещения на этой же установке, А. Г. Столетов открыл второй закон фотоэффекта: кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит от его частоты.

Из опыта следовало, что если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, а, следовательно, увеличивается и кинетическая энергия фотоэлектронов. Таким образом, кинетическая энергия фотоэлектронов линейно возрастает с частотой света.

Третий закон

Заменяя в приборе материал фотокатода, Столетов установил третий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е. существует наименьшая частота n min , при которой еще возможен фотоэффект .

При n < n min ни при какой интенсивности волны падающего на фотокатод света фотоэффект не произойдет. Т.к. , томинимальной частоте света соответствует максимальная длина волны .

Излучение электромагнитных волн веществом происходит благодаря внутриатомным и внутримолекулярным процессам. Источники энергии и, следовательно, вид свечения могут быть разными: экран телевизора, лампа дневного света, лампа накаливания, гниющее дерево, светлячок и т.д. Из всего многообразия электромагнитных излучений, видимых или не видимых человеческим глазом, можно выделить одно, которое присуще всем телам. Это излучение нагретых тел, или тепловое излучение. Оно возникает при любых температурах выше 0 К, поэтому испускается всеми телами. В зависимости от температуры тела изменяются интенсивность излучения и спектральный состав, поэтому далеко не всегда тепловое излучение воспринимается глазом как свечение.

27.1. ХАРАКТЕРИСТИКИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ.

ЧЕРНОЕ ТЕЛО

Среднюю мощность излучения за время, значительно большее периода световых колебаний, принимают за поток излучения Ф. В СИ он выражается в ваттах (Вт).Поток излучения, испускаемый 1 м 2 поверхности, называют энергетической светимостью R e . Она выражается в ваттах на квадратный метр (Вт/м 2).

Нагретое тело излучает электромагнитные волны различной длины волны. Выделим небольшой интервал длин волн от λ до λ + άλ. Энергетическая светимость, соответствующая этому интервалу, пропорциональна ширине интервала:

Серых тел в природе нет, однако некоторые тела в определенном интервале длин волн излучают и поглощают как серые. Так, например, тело человека иногда считают серым, имеющим коэффициент поглощения приблизительно 0,9 для инфракрасной области спектра.

27.2. ЗАКОН КИРХГОФА

Между спектральной плотностью энергетической светимости и монохроматическим коэффициентом поглощения тел существует определенная связь, которую можно пояснить на следующем примере.

В замкнутой адиабатной оболочке находятся два разных тела в условиях термодинамического равновесия, при этом их температуры одинаковы. Так как состояние тел не изменяется, то каждое из них излучает и поглощает одинаковую энергию. Спектр излучения каждого тела должен совпадать со спектром электромагнитных волн, поглощаемых им, иначе нарушилось бы термодинамическое равновесие. Это означает, что если одно из тел излучает какие-либо волны, например красные, больше, чем другое, то оно должно больше их и поглощать.

27.3. ЗАКОНЫ ИЗЛУЧЕНИЯ ЧЕРНОГО ТЕЛА

Излучение черного тела имеет сплошной спектр. Графики спектров излучения для разных температур приведены на рис. 27.2. Из этих экспериментальных кривых можно сделать ряд выводов.

Существует максимум спектральной плотности энергетической светимости, который с повышением температуры смещается в сторону коротких волн.

На основании (27.2) энергетическую светимость черного тела R е можно найти как площадь, ограниченную кривой и осью асбцисс, или

Из рис. 27.2 видно, что энергетическая светимость увеличивается по мере нагревания черного тела.

Долгое время не могли получить теоретически зависимость спектральной плотности энергетической светимости черного тела от длины волны и температуры, которая отвечала бы эксперименту. В 1900 г. это было сделано М. Планком.

В классической физике испускание и поглощение излучения телом рассматривались как непрерывный процесс.

Планк пришел к выводу, что именно эти основные положения не позволяют получить правильную зависимость. Он высказал гипотезу, из которой следовало, что черное тело излучает и поглощает энергию не непрерывно, а определенными дискретными порциями - квантами. Представляя излучающее тело как совокупность осцилляторов, энергия которых может изменяться лишь на величину, краткую hv, Планк получил формулу:

(h - постоянная Планка; с - скорость света в вакууме; k - постоянная Больцмана), которая прекрасно описывает экспериментальные кривые, изображенные на рис. 27.2.

На основании (27.6) и (27.8) спектр излучения серого тела может быть выражен зависимостью:


Проявление закона Вина известно из обыденных наблюдений. При комнатной температуре тепловое излучение тел в основном приходится на инфракрасную область и человеческим глазом не воспринимается. Если температура повышается, то тела начинают светиться темно-красным светом, а при очень высокой температуре - белым с голубоватым оттенком, возрастает ощущение нагретости тела.

Законы Стефана-Больцмана и Вина позволяют, измеряя излучение тел, определять их температуры (оптическая пирометрия).

27.4. ИЗЛУЧЕНИЕ СОЛНЦА. ИСТОЧНИКИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ, ПРИМЕНЯЕМЫЕ ДЛЯ ЛЕЧЕБНЫХ ЦЕЛЕЙ

Наиболее мощным источником теплового излучения, обусловливающим жизнь на Земле, является Солнце.

Поток солнечной радиации, приходящийся на 1 м 2 площади границы земной атмосферы, составляет 1350 Вт. Эту величину называют солнечной постоянной.

В зависимости от высоты Солнца над горизонтом путь, проходимый солнечными лучами в атмосфере, изменяется в довольно больших пределах (рис. 27.3; граница атмосферы изображена условно) с максимальным различием в 30 раз. Даже при самых благоприятных условиях на 1 м 2 поверхности Земли падает поток солнечной радиации 1120 Вт. В июле в Москве при наивысшем стоянии Солнца это значение достигает только 930 Вт/м 2 . В остальное время дня потери в атмосфере еще больше.

Ослабление радиации атмосферой сопровождается изменением ее спектрального состава. На рис. 27.4 показан спектр солнечного излучения на границе земной атмосферы (кривая 1) и на поверхности Земли (кривая 2) при наивысшем стоянии Солнца. Кривая 1 близка к спектру черного тела, ее максимум соответствует длине волны 470 нм, что, по закону Вина, позволяет определить температуру поверхности Солнца - около 6100 К. Кривая 2 имеет несколько линий поглощения, ее максимум расположен около 555 нм. Интенсивность прямой солнечной радиации измеряют актинометром.

Принцип действия его основан на использовании нагревания зачерненных поверхностей тел, происходящего от солнечной радиации.

В термоэлектрическом актинометре Савинова- Янишевскою (рис. 27.5) приемной частью радиации является тонкий, зачерненный с наружной стороны серебряный диск 1. К диску с электрической изоляцией припаяны спаи термоэлементов 2, другие спаи 3 прикреплены к медному кольцу (на рисунке не показано) внутри корпуса актинометра и затенены. Под действием солнечной радиации возникает электрический ток в термобатарее (см. 15.6), сила которого пропорциональна потоку радиации.

Дозированную солнечную радиацию применяют как солнцелечение (гелиотерапия), а также как средство закаливания организма.

Для лечебных целей используют искусственные источники теплового излучения: лампы накаливания (соллюкс) и инфракрасные излучатели (инфраруж), укрепленные в специальном рефлекторе на штативе. Инфракрасные излучатели устроены подобно бытовым электрическим нагревателям с круглым рефлектором. Спираль нагревательного элемента накаливается током до температуры порядка 400-500 °С.

27.5. ТЕПЛООТДАЧА ОРГАНИЗМА. ПОНЯТИЕ О ТЕРМОГРАФИИ

Тело человека имеет определенную температуру благодаря терморегуляции, существенной частью которой является теплообмен организма с окружающей средой. Рассмотрим некоторые особенности такого теплообмена, предполагая, что температура окружающей среды ниже температуры тела человека.

Теплообмен происходит посредством теплопроводности, конвекции, испарения и излучения (поглощения).

Трудно или даже невозможно точно указать распределение отдаваемого количества теплоты между перечисленными процессами, так как оно зависит от многих факторов: состояния организма (температура, эмоциональное состояние, подвижность и т.д.), состояния окружающей среды (температура, влажность, движение воздуха и т.п.), одежды (материал, форма, цвет, толщина).

Однако можно сделать приближенную и усредненную оценки для лиц, не имеющих особой физической нагрузки и проживающих в условиях умеренного климата.

Так как теплопроводность воздуха мала, то этот вид теплоотдачи очень незначителен.

Более существенна конвекция, она может быть не только обычной, естественной, но и вынужденной, при которой воздух обдувает нагретое тело. Большую роль для уменьшения конвекции играет одежда. В условиях умеренного климата 15-20% теплоотдачи человека осуществляется конвекцией.

Испарение происходит с поверхности кожи и легких, при этом имеет место около 30% теплопотерь.

Наибольшая доля теплопотерь (около 50%) приходится на излучение во внешнюю среду открытых частей тела и одежды. Основная часть это-

го излучения относится к инфракрасному диапазону с длиной волны от 4 до 50 мкм.

Для вычисления этих потерь сделаем два основных допущения.

1. Излучаемые тела (кожа человека, ткань одежды) примем за серые. Это позволит использовать формулу (27.12).

Назовем произведение коэффициента поглощения на постоянную Стефана-Больцмана приведенным коэффициентом излучения: δ = ασ. Тогда (27.12) перепишется так:

Ниже даны коэффициент поглощения и приведенный коэффициент излучения для некоторых тел (табл. 27.1).

Таблица 27.1

2. Применим закон Стефана-Больцмана к неравновесному излучению, к которому, в частности, относится излучение тела человека.

Если раздетый человек, поверхность тела которого имеет температуру т 1 , находится в комнате с температурой т 0 , то его потери излучением могут быть вычислены следующим образом. В соответствии с формулой (27.15) человек излучает со всей открытой поверхности тела площади s мощность p 1 = Sδ t] 4 . Одновременно человек поглощает часть излучения, попадающего от предметов комнаты, стен, потолка и т.п. Если бы поверхность тела человека имела температуру, равную температуре воздуха в комнате, то излучаемая и поглощаемая мощности были бы одинаковы и равны р 0 = Sδ t 0 4 .

Такая же мощность будет поглощаться телом человека и при других температурах поверхности тела.

На основании двух последних равенств получаем мощность, теряемую человеком при взаимодействии с окружающей средой посредством излучения:

Для одетого человека под Т 1 следует понимать температуру поверхности одежды. Приведем количественный пример, поясняющий роль одежды.

При температуре окружающей среды 18° С (291 К) раздетый человек, температура поверхности кожи которого 33°С (306 К), теряет ежесекундно посредством излучения с площади 1,5 м 2 энергию:

Р = 1,5 ? 5,1 ? 10-8 (3064 - 2914) Дж/с и 122 Дж/с.

При той же температуре окружающей среды в хлопчатобумажной одежде, температура поверхности которой 24 °С (297 К), ежесекундно теряется посредством излучения энергия:

Р од = 1,5 ? 4,2 ? 10-8 (2974 - 2914) Дж/с и 37 Дж/с.

Максимум спектральной плотности энергетической светимости тела человека в соответствии с законом Вина попадает на длину волны приблизительно 9,5 мкм при температуре поверхности кожи 32°С.

Вследствие сильной температурной зависимости энергетической светимости (четвертая степень термодинамической температуры) даже небольшое повышение температуры поверхности может вызвать такое изменение излучаемой мощности, которое надежно зафиксируется приборами. Поясним это количественно.

Продифференцируем уравнение (27.15): dR e = 4σ 7 3 ? dΤ. Разделив это выражение на (27.15), получим dR e /R e = 4dT/T. Это означает, что относительное изменение энергетической светимости больше относительного изменения температуры излучающей поверхности в четыре раза. Так, если температура поверхности тела человека изменится на 3 °С, т.е. приблизительно на 1%, то энергетическая светимость изменится на 4%.

У здоровых людей распределение температуры по различным точкам поверхности тела достаточно характерно. Однако воспалительные процессы, опухоли могут изменить местную температуру.

Температура вен зависит от состояния кровообращения, а также от охлаждения или нагревания конечностей. Таким образом, регистрация излучения разных участков поверхности тела человека и определение их температуры являются диагностическим методом.

Такой метод, называемый термографией, находит все более широкое применение в клинической практике.

Термография абсолютно безвредна и в перспективе может стать методом массового профилактического обследования населения.

Определение различия температуры поверхности тела при термографии в основном осуществляется двумя методами. В одном случае используются жидкокристаллические индикаторы, оптические свойства которых очень чувствительны к небольшим изменениям температуры. Помещая эти индикаторы на тело больного, можно визуально по изменению их цвета определить местное различие температуры.

Другой метод - технический, он основан на использовании тепловизоров (см. 27.8).

27.6. ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ И ЕГО ПРИМЕНЕНИЕ В МЕДИЦИНЕ

Электромагнитное излучение, занимающее спектральную область между красной границей видимого света = 0,76 мкм) и коротковолновым радиоизлучением = (1-2) мм], называют инфракрасным (ИК).

Инфракрасную область спектра условно разделяют на близкую (0,76-2,5 мкм), среднюю (2,5-50 мкм) и далекую (50-2000 мкм).

Нагретые твердые и жидкие тела испускают непрерывный инфракрасный спектр. Если в законе Вина вместо λ Μαχ подставить пределы ИК-излучения, то получим соответственно температуры 3800-1,5 К. Это означает, что все жидкие и твердые тела в обычных условиях практически не только являются источниками ИК-излучения, но и имеют максимальное излучение в ИК-области спектра. Отклонение реальных тел от серых не изменяет существа вывода.

При невысокой температуре энергетическая светимость тел мала. Поэтому далеко не все тела могут быть использованы в качестве источников ИК-излучения. В связи с этим наряду с тепловыми источниками ИК-излучения используют еще ртутные лампы высокого давления и лазеры, которые уже не дают сплошного спектра. Мощным источником ИК-излучения является Солнце, около 50% его излучения лежит в ИК-об-ласти спектра.

Методы обнаружения и измерения ИК-излучения делят в основном на две группы: тепловые и фотоэлектрические. Примером теплового приемника служит термоэлемент, нагревание которого вызывает электрический ток (см. 15.6). К фотоэлектрическим приемникам относят фотоэлементы, электронно-оптические преобразователи, фотосопротивления (см. 27.8).

Обнаружить и зарегистрировать инфракрасное излучение можно также фотопластинками и фотопленками со специальным покрытием.

Лечебное применение инфракрасного излучения основано на его тепловом действии. Наибольший эффект достигается коротковолновым ИК-излучением, близким к видимому свету. Для лечения используют специальные лампы (см. 27.4).

Инфракрасное излучение проникает в тело на глубину около 20 мм, поэтому в большей степени прогреваются поверхностные слои. Терапевтический эффект как раз и обусловлен возникающим температурным градиентом, что активизирует деятельность терморегулирующей системы. Усиление кровоснабжения облученного места приводит к благоприятным лечебным последствиям.

27.7. УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ И ЕГО ПРИМЕНЕНИЕ В МЕДИЦИНЕ

Электромагнитное излучение, занимающее спектральную область между фиолетовой границей видимого света (λ = 400 нм) и длинноволновой частью рентгеновского излучения (λ = 10 нм), называют ультрафиолетовым (УФ).

В области ниже 200 нм УФ-излучение сильно поглощается всеми телами, в том числе и тонкими слоями воздуха, поэтому особого интереса для медицины не представляет.

Остальную часть УФ-спектра условно делят на три области: А (400315 нм), В (315-280 нм) и С (280-200 нм).

Накаленные твердые тела при высокой температуре излучают заметную долю УФ-излучения. Однако максимум спектральной плотности энергетической светимости в соответствии с законом Вина даже для наиболее длинной волны (0,4 мкм) приходится на 7000 К. Практически это означает, что в обычных условиях тепловое излучение серых тел не может служить эффективным источником мощного УФ-излучения. Наиболее мощным источником теплового УФ-излучения является Солнце, 9% излучения которого на границе земной атмосферы составляет ультрафиолетовое.

В лабораторных условиях в качестве источников УФ-излучения используют электрический разряд в газах и парах металлов. Такое излучение уже не является тепловым и имеет линейчатый спектр.

Измерение УФ-излучения в основном осуществляется фотоэлектрическими приемниками: фотоэлементами, фотоумножителями (см. 27.8). Индикаторами УФ-света являются люминесцирующие вещества и фотопластинки.

УФ-излучение необходимо для работы ультрафиолетовых микроскопов (см. 26.8), люминесцентных микроскопов, для люминесцентного анализа (см. 29.7).

Главное применение УФ-излучения в медицине связано с его специфическим биологическим воздействием, которое обусловлено фотохимическими процессами (см. 29.9).

27.8. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ЕГО НЕКОТОРЫЕ ПРИМЕНЕНИЯ

Фотоэлектрическим эффектом (фотоэффектом) называют группу явлений, возникающих при взаимодействии света с веществом и заключающихся либо в эмиссии электронов (внешний фотоэффект), либо в изменении электропроводимости вещества или возникновении электродвижущей силы (внутренний фотоэффект).

В фотоэффекте проявляются корпускулярные свойства света. Данный вопрос излагается в настоящей главе, так как ряд методов индикации теплового излучения основан на этом явлении.

Внешний фотоэффект наблюдается в газах на отдельных атомах и молекулах (фотоионизация) и в конденсированных средах.

Внешний фотоэффект в металле можно представить состоящим из трех процессов: поглощение фотона электроном проводимости, в результате чего увеличивается кинетическая энергия электрона; движение электрона к поверхности тела; выход электрона из металла. Этот процесс энергетически описывают уравнением Эйнштейна:

hv = А + m υ2 /2, (27.16)

где hv = ε - энергия фотона; m υ 2 /2 - кинетическая энергия электрона, вылетевшего из металла; А - работа выхода электрона.

Если, освещая металл монохроматическим светом, уменьшать частоту излучения (увеличивать длину волны), то, начиная с некоторого ее значения, называемого красной границей, фотоэффект прекратится. Согласно (27.16), предельному случаю соответствует нулевая кинетическая энергия электрона, что приводит к соотношению:

hv rp = А, или λ гр = hc/А. (27.17)

С помощью этих выражений определяют работу выхода А.

Приведем значения красной границы фотоэффекта и работы выхода для некоторых металлов (табл. 27.2).

Таблица 27.2

Как видно, термин «красная граница» не означает, что граница фотоэффекта обязательно попадает в область красного цвета.

Внутренний фотоэффект наблюдается при освещении полупроводников и диэлектриков, если энергия фотона достаточна для переброса электрона из валентной зоны в зону проводимости. В примесных полупроводниках фотоэффект обнаруживается также в том случае, если энергия электрона достаточна для переброса электронов в зону проводимости с донорных примесных уровней или из валентной зоны на акцепторные примесные уровни. Так в полупроводниках и диэлектриках возникает фотоэлектропроводимость.

Интересная разновидность внутреннего фотоэффекта наблюдается в контакте электронного и дырочного полупроводников. В этом случае под действием света возникают электроны и дырки, которые разделяются электрическим полем p- и-перехода: электроны перемещаются в полупроводник типа и, а дырки - в полупроводник типа р. При этом между дырочным и электронным полупроводниками изменяется контактная разность потенциалов по сравнению с равновесной, т.е. возникает фотоэлектродвижущая сила. Такую форму внутреннего фотоэффекта называют вентильным фотоэффектом.

Он может быть использован для непосредственного преобразования энергии электромагнитного излучения в энергию электрического тока.

Электровакуумные или полупроводниковые приборы, принцип работы которых основан на фотоэффекте, называют фотоэлектронными. Рассмотрим устройство некоторых из них.

Наиболее распространенным фотоэлектронным прибором является фотоэлемент. Фотоэлемент, основанный на внешнем фотоэффекте (рис. 27.6, а), состоит из источника электронов - фотокатода К, на который попадает свет, и анода А. Вся система заключена в стеклянный баллон, из которого откачан воздух. Фотокатод, представляющий фоточувствительный слой, может быть непосредственно нанесен на часть внут-

ренней поверхности баллона (рис, 27.6, б). На рис. 27.6, в дана схема включения фотокатода в цепь.

Для вакуумных фотоэлементов рабочим режимом является режим насыщения, которому соответствуют горизонтальные участки вольт-амперных характеристик, полученных при разных значениях светового потока (рис. 27.7; Ф 2 > Ф 1).

Основной параметр фотоэлемента - его чувствительность, выражаемая отношением силы фототока к соответствующему световому потоку. Эта величина в вакуумных фотоэлементах достигает значения порядка 100 мкА/лм.

Для увеличения силы фототока применяют также газонаполненные фотоэлементы, в которых возникает несамостоятельный темный разряд в инертном газе, и вторичную электронную эмиссию - испускание электронов, происходящее в результате бомбардировки поверхности металла пучком первичных электронов. Последнее находит применение в фотоэлектронных умножителях (ФЭУ).

Схема ФЭУ приведена на рис. 27.8. Падающие на фотокатод К фотоны эмиттируют электроны, которые фокусируются на первом электроде (диноде) Э 1 . В результате вторичной электронной эмиссии с этого дино-да вылетает больше электронов, чем падает на него, т.е. происходит как бы умножение электронов. Умножаясь на следующих динодах, электроны в итоге образуют усиленный в сотни тысяч раз ток по сравнению с первичным фототоком.


ФЭУ применяют главным образом для измерения малых лучистых потоков, в частности ими регистрируют сверхслабую биолюминесценцию, что важно при некоторых биофизических исследованиях.

На внешнем фотоэффекте осно-ванаработа электронно-оптического

преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений.

Схема простейшего ЭОП приведена на рис. 27.9. Световое изображение объекта 1, спроецированное на полупрозрачный фотокатод К, преобразуется в электронное изображение 2. Ускоренные и сфокусированные электрическим полем электродов Э электроны попадают на люминесцентный экран L. Здесь электронное изображение благодаря катодолюминесценции вновь преобразуется в световое 3.

В медицине ЭОП применяют для усиления яркости рентгеновского изображения (см. 31.4), это позволяет значительно уменьшить дозу облучения человека. Если сигнал с ЭОП подать в виде развертки на телевизионную систему, то на экране телевизора можно получить «тепловое» изображение предметов. Части тела, имеющие разные температуры, различаются на экране либо цветом при цветном изображении, либо яркостью, если изображение черно-белое. Такая техническая система,



называемая тепловизором, она используется в термографии (см. 27.5). На рис. 27.10 дан внешний вид тепловизора ТВ-03.

Вентильные фотоэлементы имеют преимущество перед вакуумными, так как работают без источника тока.

Один из таких фотоэлементов - медно-закисный - представлен на схеме рис. 27.11. Медная пластинка, служащая одним из электродов, покрывается тонким слоем закиси меди Си 2 О (полупроводник). На закись меди наносится прозрачный слой металла (например, золото Аи), который служит вторым электродом. Если фотоэлемент осветить через второй электрод, то между электродами возникнет фото-э.д.с., а при замыкании электродов в электрической цепи пойдет ток, зависящий от светового потока. Чувствительность вентильных фотоэлементов достигает нескольких тысяч микроампер на люмен.

На основе высокоэффективных вентильных фотоэлементов с к.п.д., равным 15% для солнечного излучения, создают специальные солнечные батареи для питания бортовой аппаратуры спутников и космических кораблей.

Зависимость силы фототока от освещенности (светового потока) позволяет использовать фотоэлементы как люксметры, что находит применение в санитарно-гигиенической практике и при фотографировании для определения экспозиции (в экспонометрах).

Некоторые вентильные фотоэлементы (сернисто-таллиевый, германиевый и др.) чувствительны к инфракрасному излучению, их применяют для обнаружения нагретых невидимых тел, т.е. как бы расширяют возможности зрения. Другие фотоэлементы (селеновые) имеют спектральную чувствительность, близкую к человеческому глазу, это открывает возможности использования их в автоматических системах и приборах вместо глаза как объективных приемников видимого диапазона света.

На явлении фотопроводимости основаны приборы, называемые фото-сопротивлениями. Простейшее фотосопротивление (рис. 27.12)

представляет собой тонкий слой полупроводника 1 с металлическими электродами 2; 3 - изолятор.

Фотосопротивления, как и фотоэлементы, позволяют определять некоторые световые характеристики и используются в автоматических системах и измерительной аппаратуре.

27.9. СВЕТОВОЙ ЭТАЛОН. НЕКОТОРЫЕ СВЕТОВЫЕ ВЕЛИЧИНЫ

Тепловое излучение тел широко используют как источник видимого света, поэтому остановимся еще на некоторых величинах, характеризующих его.

Для воспроизведения с наивысшей достижимой точностью единиц световых величин применяют световой эталон со строго заданными геометрическими размерами.

Устройство его схематически показано на рис. 27.13: 1 - трубка из плавленного оксида тория вставлена в тигель 2, состоящий из плавленного оксида тория и заполненный химически чистой платиной 3; 4 - кварцевый сосуд с порошком оксида тория 5; 6 - смотровое окно; 7 - фотометрическая установка, позволяющая уравнивать освещенности, создаваемые на пластине 9, эталонным излучателем и эталоном-копией; 8 - специальная электрическая лампа накаливания (эталон-копия).

Сила света i - характеристика источника света - выражается в кан-делах (кд). Кандела - сила света, испускаемого с поверхности площадью 1/600 000 м 2 полного излучателя в перпендикулярном направлении при температуре излучателя, равной температуре затвердевания платины при давлении 101 325 Па.

Световым потоком Ф называют среднюю мощность энергии излучения, оцениваемую по световому ощущению, которое она производит.

Единицей светового потока является люмен (лм). Люмен - световой поток, излучаемый точечным источником в телесном угле 1 ср при силе света 1 кд.

Светимостью называют величину, равную отношению светового потока, испускаемого светящейся поверхностью, к площади этой поверхности:

Единицей светимости является люкс (лк) - освещенность поверхности площадью 1 м 2 при световом потоке падающего на нее излучения, равном 1 лм.

Для оценки излучения или отражения света в заданном направлении вводят световую величину, называемую яркостью. Яркость определяют как отношение силы света dI элементарной поверхности dS в заданном направлении к проекции светящейся поверхности на плоскость, перпендикулярную этому направлению:

где α - угол между перпендикуляром к светящейся поверхности и заданным направлением (рис. 27.14).

Единица яркости - кандела на квадратный метр (кд/м 2). Световой эталон при сформулированных выше условиях соответствует яркости 6 ? 10 5 кд/м 2 .

Источники, яркость которых одинакова по всем направлениям, называют ламбертовскими; строго говоря, таким источником является только черное тело.

Освещенностью называют величину,равную отношению потока, падающего на данную поверхность, к площади этой поверхности:

В гигиене освещенность используется для оценки освещения. Измеряется освещенность люксметрами, принцип действия которых основан на фотоэффекте (см. 27.8).

Оценку и нормирование естественного освещения производят не в абсолютных единицах, а в относительных показателях коэффициента естественной освещенности - отношение естественной освещенности в рассматриваемой точке внутри помещения к одновременному значению наружной освещенности на горизонтальной поверхности под открытым небом без прямого солнечного света.

Оценка искусственного освещения производится путем измерения освещенности и яркости, а нормирование уровней искусственного освещения - с учетом характера зрительной работы. Пределы допускаемой освещенности для разных работ колеблются от сотни до нескольких тысяч люкс.

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.

Правило Прево : Если два тела, находящиеся при одной и той же температуре, поглощают разные количества энергии, то их тепловое излучение при этой температуре должно быть различным.

Излучательной (лучеиспускательной) способностью или спектральной плотностью энергетической светимости тела называют величину Е n ,Т, численно равную поверхностной плотности мощности теплового излучения тела в интервале частот единичной ширины:

Е n ,Т = dW/dn, W – мощность теплового излучения.

Излучательная способность тела зависит от частоты n, абсолютной температуры тела Т, материала, формы и состояния поверхности. В системе СИ Е n ,Т измеряется в дж/м 2 .

Температура – физическая величина, характеризующая степень нагретости тела. Абсолютный нуль равен –273,15°С. Температура в Кельвинах ТК = t°С + 273,15°C.

Поглощательной способностью тела называют величину А n ,Т, показывающую, какая доля от падающей (приобретенной) энергии поглощается телом:

А n ,Т = W погл / W пад, .

А n ,Т – величина безразмерная. Она зависит от n, Т, от формы тела, материала, состояния поверхности.

Введем понятие – абсолютно черное тело (а.ч.т.). Тело называется а.ч.т., если оно при любой температуре поглощает все падающие на него электромагнитные волны, т. е. тело, у которого А n ,Т º 1. Реализовать а.ч.т. можно в виде полости с небольшим отверстием, диаметр которого много меньше диаметра полости (рис. 3). Электромагнитное излучение, попадающее через отверстие во внутрь полости, в результате многократных отражений от внутренней поверхности полости практически полностью ею поглощается независимо от того, из какого материала сделаны стенки полости. Реальные тела не являются абсолютно черными. Однако некоторые из них по оптическим свойствам близки к а.ч.т. (сажа, платиновая чернь, черный бархат). Тело называется серым, если его поглощательная способность одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела.

Рис. 3. Модель абсолютно чёрного тела.

d-диаметр входного отверстия, D-диаметр полости а.ч.т.

Закон Кирхгофа для теплового излучения. Для произвольной частоты и температуры отношение излучательной способности тела к его поглощательной способности одинаково для всех тел и равно излучательной способности e n ,Т абсолютно черного тела, являющейся функцией только частоты и температуры.

Е n ,Т / А n ,Т = e n ,Т.

Из закона Кирхгофа следует, что если тело при данной температуре Т не поглощает излучения в некотором интервале частот (А n ,Т = 0), то оно не может при этой температуре и равновесно излучать в этом же интервале частот. Поглощательная способность тел может изменяться от 0 до 1. Непрозрачные тела, у которых степень черноты равна 0, не излучают и не поглощают электромагнитных волн. Падающее на них излучение они полностью отражают. Если при этом отражение происходит в соответствии с законами геометрической оптики, то тело называется зеркальным.



Тепловой излучатель, спектральный коэффициент излучения которого не зависит от длины волны, называется неселективным , если же зависит - селективным .

Классическая физика оказалась не в состоянии объяснить теоретически вид функции излучательной способности а.ч.т. e n ,Т, измеренной экспериментально. По классической физике энергия любой системы изменяется непрерывно, т.е. может принимать любые сколь угодно близкие значения. В области больших частот e n ,Т монотонно возрастает с ростом частоты (“ультрафиолетовая катастрофа”). В 1900 г. М. Планк предложил формулу для лучеиспускательной способности а.ч.т.:

,

,

по которой излучение и поглощение энергии частицами излучающего тела должно происходить не непрерывно, а дискретно, отдельными порциями, квантами, энергия которого

Проводя интегрирование формулы Планка по частотам, получаем объемную плотность излучения а.ч.т., закон Стефана-Больцмана:

e Т = sТ 4 ,

где s - постоянная Стефана-Больцмана, равная 5,67×10 -8 Вт×м -2 ×К -4 .

Интегральная излучательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры. При малых частотах e n ,Т пропорциональна произведению n 2 Т, а в области больших частот e n ,Т пропорциональна n 3 exp(-an/T), где а – некоторая постоянная.

Максимум спектральной плотности излучения может быть найден также из формулы Планка – закон Вина: частота, соответствующая максимальному значению лучеиспускательной способности абсолютно черного тела, пропорциональна его абсолютной температуре. Длина волны l макс, соответствующая максимальному значению лучеиспускательной способности, равна

l макс = b/T,

где b – постоянна Вина, равная 0,002898 м×К.

Значения l макс и n макс не связаны формулой l = с/n, так как максимумы e n ,Т и e l ,Т расположены в разных частях спектра.

Распределение энергии в спектре излучения абсолютно черного тела при различных температурах имеет вид, изображенный на рис. 4. Кривые при Т=6000 и 300 К характеризуют соответственно излучение Солнца и человека. При достаточно высоких температурах (Т>2500 К) часть спектра теплового излучения приходится на видимую область.

Рис. 4. Спектральные характеристики нагретых тел.

Оптоэлектроника изучает лучистые потоки, идущие от предметов. Необходимо собрать достаточное количество лучистой энергии от источника, передать его приемнику и выделить полезный сигнал на фоне помех, шумов. Различают активный и пассивный метод работы прибора. Активным считается метод, когда есть источник излучения и надо излучение передать на приемник. Пассивный метод работы прибора, когда отсутствует специальный источник и используется собственное излучение объекта. На рис. 5 представлены блок-схемы обоих методов.

Рис. 5. Активный (а) и пассивный (б) методы работы прибора.

Применяются различные оптические схемы фокусировки потоков излучения. Напомним основные законы оптики:

1. Закон прямолинейного распространения света.

2. Закон независимости световых пучков.

3. Закон отражения света.

4. Закон преломления света.

Поглощение света в веществе определяется, как

I = I 0 exp(-ad),

где I 0 и I - интенсивности световой волны на входе в слой поглощающего вещества толщиной d и на выходе из него, a - коэффициент поглощения света веществом (закон Бугера-Ламберта).

В различного типа приборах, применяемых в оптоэлектронике, осуществляются фокусировка излучения, идущего от объекта или источника; модуляция излучения; разложение излучения в спектр диспергирующими элементами (призма, решетка, фильтры); сканирование по спектру; фокусировка на приемник излучения. Далее сигнал передаётся на приемное электронное устройство, проводится обработка сигнала и запись информации.

В настоящее время в связи с решением ряда задач по обнаружению объектов находит широкое развитие импульсная фотометрия.


Глава 2. Источники излучения оптического диапазона.

Источниками излучения являются все объекты, которые имеют температуру, отличную от температуры фона. Объекты могут отражать падающее на них излучение, например, солнечное. Максимум излучения Солнца находится у 0.5 мкм. К источникам излучения относятся промышленные здания, автомашины, тело человека, животного и т. д. Простейшей классической моделью излучателя является электрон, колеблющийся около положения равновесия по гармоническому закону.

К естественным источникам излучения относятся Солнце, Луна, Земля, звезды, облака и т.д.

К искусственным источникам излучения относятся источники, параметрами которых можно управлять. Такие источники используются в осветителях оптоэлектронных приборов, в приборах для научных исследований и т.д.

Излучение света происходит в результате переходов атомов, молекул из состояний с большей в состояния с меньшей энергией. Свечение вызывается либо столкновениями между атомами, совершающими тепловое движение, либо электронными ударами.

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.

Электромагнитное излучение тела, находящегося в состоянии термодинамического равновесия, называют тепловым (температурным) излучением. Иногда под тепловым излучением понимают не только равновесное, но также и неравновесное излучение тел, обусловленное их нагреванием.

Такое равновесное излучение осуществляется, например, если излучающее тело находится внутри замкнутой полости с непрозрачными стенками, температура которых равна температуре тела.

В теплоизолированной системе тел, находящихся при одной и той же температуре, теплообмен между телами путем испускания и поглощения теплового излучения не может привести к нарушению термодинамического равновесия системы, так как это противоречило бы, второму началу термодинамики.

Поэтому для теплового излучения тел должно выполняться правило Прево: если два тела при одной и той же температуре поглощают разные количества энергии, то и их тепловое излучение при этой температуре должно быть различным.

Лучеиспускательной (излучательной) способностью или спектральной плотностью энергетической светимости тела называют величину Еn,т, численно равную поверхностной плотности мощности теплового излучения тела и интервале частот единичной ширины:

Где dW - энергии теплового излучения с единицы площади поверхности тела за единицу времени в интервале частот от v до v + dr.

Лучеиспускательная способность Еn,т, является спектральной характеристикой теплового излучения тела. Она зависит от частоты v, абсолютной температуры Т тела, а также от его материала, формы и состояния поверхности. В системе СИ Еn,т, измеряется в дж/м2.

Поглощательной способностью или монохроматическим коэффициентом поглощения тела называют величину Аn,т, показывающую, какая доля энергии dWпад, доставляемой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от v до v+dv, поглощается телом:

Аn,т - величина безразмерная. Она зависит, помимо частоты излучения и температуры тела, от его материала, формы и состояния поверхности.

Тело называется абсолютно черным, если оно при любой температуре полностью поглощает все падающие на него электромагнитные полны: Аn,т черн = 1.

Реальные тела не являются абсолютно черными, однако некоторые из них по оптическим свойствам близки к абсолютно черному телу (сажа, платиновая чернь, черный бархат в области видимого света имеют Аn,т, мало отличающиеся от единицы)

Тело называют серым,если его поглощательная способность одинакова для всех частот n и зависит только от температуры, материала и состояния поверхности тела



Между лучеиспускательной Еn,т и поглощательной Аn,т способностями любого непрозрачного тела существует соотношение (закон Киргофа в дифференциальной форме):

Для произвольной частоты и температуры отношение лучеиспускательной способности тела к его поглощательной способности одинаково для всех тел и равно лучеиспускательной способности en,т абсолютно черного тела, являющейся функцией только частоты и температуры (функция Кирхгофа Еn,т = Аn,тen,т = 0).

Интегральная излучательная способность (энергетическая светимость) тела:

представляет собой поверхностную плотность мощности теплового излучения тела, т.е. энергию излучения всех возможных частот, испускаемого с единицы поверхности тела за единицу времени.

Интегральная излучательная способность eТ абсолютно черного тела:

2. Законы излучения абсолютно черного тела

Законы излучения абсолютно черного тела устанавливают зависимость eТ и e n,Т от частоты и температуры.

Закон Cmeфана - Болъцмапа:

Величина σ- универсальная постоянная Стефана -Больцмана, равная 5,67 -10-8 вт/м2*град4.

Распределение энергии в спектре излучения абсолютно черного тела, т. е. зависимость en,Т, от частоты при различных температурах, имеет вид, изображенный на рисунке:

Закон Вина:

где с - скорость света в вакууме, a f(v/T) - универсальная функция отношения частоты излучения абсолютно черного тела к его температуре.

Частота излучения nмакс, соответствующая максимальному значению лучеиспускательной способности en,Т абсолютно черного тела, согласно закону Вина равна



Где b1 - постоянная величина, зависящая от вида функции f(n/T).

Закон смещения Buнa: частота, соответствующая максимальному значению лучеиспускательной способности en,Т абсолютно черного тела, прямо пропорциональна его абсолютной температуре.

С энергетической точки зрения черное излучение эквивалентно излучению системы бесконечно большого числа не взаимодействующих гармонических осцилляторов, называемых радиационными осцилляторами. Если ε(ν) – средняя энергия радиационного осциллятора с собственной частотой ν, то

ν= и

Согласно классическому закону о равномерном распределении энергии по степеням свободы ε(ν) = kT, где k постоянная Больцмана, и

Это соотношение называют формулой Релея-Джинса. В области больших частот она приводит к резкому расхождению с опытом, носящему название «ультра-Фиолетовой катастрофы: en,Т монотонно возрастает с ростом частоты, не имея максимума, а интегральная лучеиспускательная способность абсолютно черного тела обращается в бесконечность.

Причина вышеуказанных трудностей, возникших при отыскании вида функции Кирхгофа en,Т, связана с одним из основных положений классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения.

По квантовой теории Планка энергия радиационного осциллятора с собственной частотой v может принимать лишь определенные дискретные (квантованные) значения, отличающиеся на целое число элементарных порций - квантов энергии:

h = б,625-10-34 дж*сек - постоянная Планка (квант действия). В соответствии с этим излучение и поглощение энергии частицами излучающего тела (атомами, молекулами или ионами), обменивающимися энергией с радиационными осцилляторами, должно происходить, не непрерывно, а дискретно - отдельными порциями (квантами).

Попытки описания:

Термин был введён Густавом Кирхгофом в 1862.

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики. Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса.
На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.
Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с Формулой Рэлея - Джинса.
Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка.

Общая энергия теплового излучения определяется законом Стефана-Больцмана. Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Винна. Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению).

Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

24) Элементарная квантовая теория излучения. Главное здесь (коротко): 1) Излучение это следствие перехода квантовой системы из одного состояния в другое - с меньшей энергией. 2) Излучение происходит не непрерывно, а порциями энергии - квантами. 3) Энергия кванта равна разности энергии уровней. 4) Частота излучения определяется известной формулой Е=hf. 5) Квант излучения (фотон) проявляет свойства как частицы, так и волны.Подробно: Квантовая теория излучения была использована Эйнштейном для интерпретации фотоэлектрического эффекта. Квантовая теория излучения дает возможность обосновать теорию Эйнштейна. Квантовая теория излучения (с учетом определенных предположений о перенормировке) достаточно полно описывает взаимодействие излучения с веществом. Несмотря на это, заманчиво доказать, что концептуальные основы квантовой теории излучения и понятие фотона лучше всего рассматривать через классическое поле и флуктуации, связанные с вакуумом. Однако успехи квантовой оптики выдвинули новые аргументы в пользу квантования электромагнитного поля, и вместе с ними возникло более глубокое понимание сущности фотонов. Квантовая теория излучения света существенно использует тот факт, что энергия взаимодействия между веществом (атомом, молекулой, кристаллом) и электромагнитным полем весьма мала. Это позволяет в нулевом приближении рассматривать поле и вещество независимо друг от друга и говорить о фотонах и стационарных состояниях вещества. Учет энергии взаимодействия в первом приближении обнаруживает возможность перехода вещества из одного стационарного состояния в другое. Эти переходы сопровождаются появлением или исчезновением одного фотона и представляют собой поэтому те элементарные акты, из которых слагаются процессы излучения и поглощения света веществом. Согласно квантовой теории излучения элементарный процесс фотолюминесценции следует рассматривать состоящим из акта электронного возбуждения молекул люминесцирующего вещества поглощенными фотонами и последующего излучения молекул при переходе их из возбужденного состояния в нормальное. Как показали экспериментальные исследования, элементарный процесс фотолюминесценции не всегда происходит в пределах одного излучающего центра. Для построения квантовой теории излучения оказалось необходимым учитывать взаимодействие электрона с вторично квантованным полем фотонов.
Начало развития квантовой теории излучения заряда, движущегося в электромагнитном поле плоской волны, было положено известной работой Клейна и Нишины, в которой было рассмотрено рассеяние фотона на покоящемся электроне. Планк выдвинул квантовую теорию излучения, согласно которой энергия излучается и поглощается не непрерывно, а определенными порциями - квантами, называемыми фотонами. Таким образом, квантовая теория излучения не только приводит к выводам, следующим из волновой теории, но и дополняет их новым предсказанием, нашедшим блестящее экспериментальное подтверждение. Волновой пакет с минимальной неопределенностью в различные моменты времени в потенциальном поле гармонического осциллятора (а. соответствующее электрическое поле (б. По мере развития квантовой теории излучения и с появлением лазера были в значительной мере изучены состояния поля, наиболее близко описывающие классическое электромагнитное поле. Со времени зарождения квантовой теории излучения черного тела вопрос о том, насколько хорошо уравнения Планка и Стефана - Больцмана описывают плотность энергии внутри реальных, конечных полостей, имеющих полуотражающие стенки, был предметом неоднократных обсуждений. Большинство из них имели место в первые два десятилетия нашего века, однако вопрос закрыт полностью не был, и в последние годы интерес к этой и некоторым другим родственным проблемам возродился. Среди причин возрождения интереса к этому старейшему предмету современной физики можно назвать развитие квантовой оптики, теории частичной когерентности и ее применение к изучению статистических свойств излучения; недостаточное понимание процессов теплообмена излучением между близкорасположенными телами при низких температурах и проблему эталонов далекого инфракрасного излучения, для которого длина волны не может считаться малой, а также ряд теоретических проблем, относящихся к статистической механике конечных систем. Он показал также, что в пределе больших объемов или высоких температур число Джинса справедливо для полости любой формы. Позднее на основании результатов работы Вейля были получены асимптотические приближения, где D0 (v) являлся просто первым членом ряда, полная сумма которого D (v) представляла собой среднюю плотность мод. Волна до Врой - Гося по круговой орбите, нужно, чтобы сум-ля, связанная с электро - мармя длина траектории Znr являлась кратном в гипотезе кругсшои. г г орбиты. Волны, разру - ной длине волны электрона. в противном шающиеся интерферен - случае волна будет разрушаться вследствие цией, изображены жир - интерференции (9. Условие существо-ной линией. вания устойчивой орбиты радиуса г вы. По аналогии с квантовой теорией излучения де Бройль предположил в 1924 г., что электрон и, более того, вообще всякая материальная частица одновременно обладают и волновыми и корпускулярными свойствами. Согласно де Бройлю, движущейся частице с массой т и скоростью v соответствует длина волны K h / mv, где h - постоянная Планка. В соответствии с квантовой теорией излучения энергия элементарных излучателей может изменяться только скачками, кратными некоторому значению, постоянному для данной частоты излучения. Минимальная порция энергии называется квантом энергии. Блестящее согласие между полностью квантовой теорией излучения и вещества и экспериментом, достигнутое на примере лэмбовского сдвига, обеспечило сильный довод в пользу квантования поля излучения. Однако подробный расчет лэмбовского сдвига увел бы нас далеко от главного направления квантовой оптики. Мессбауэровские переходы, наиболее удобные в экспериментальной. Эти данные подтверждают выводы квантовой теории излучения для гамма-диапазона.
Представив это краткое обоснование квантовой теории излучения, приступим к квантованию свободного электромагнитного поля. Масса покоя фотона в квантовой теории излучения считается равной нулю. Однако это лишь постулат теории, потому что ни один реальный физический эксперимент не может подтвердить этого. Остановимся кратко на основных положениях квантовой теории излучения. Если мы хотим на основе квантовой теории излучения понять действие светоделителя и его квантовые свойства, надо следовать указанному выше рецепту: сначала найти собственные моды, а затем проквантовать, как описано в предыдущей главе. Но каковы в нашем случае граничные условия, которые определяют эти моды. Во первых, необходимо расширить квантовую теорию излучения с тем, чтобы рассмотреть неквантовые стохастические эффекты, такие как тепловые флуктуации. Это является важной составляющей теории частичной когерентности. Кроме того, такие распределения делают понятной связь между классической и квантовой теориями. Книга является пособием для изучения курсов Квантовая теория излучения и Квантовая электродинамика. Принцип построения книги: изложение основ курса занимает малую часть ее объема, большая часть фактического материала приводится в форме задач с решениями, необходимый математический аппарат дан в приложениях. Все внимание сосредоточено на нерелятивистском характере излуча-тельных переходов в атомных системах. Теоретически определить AnJBnm в формуле (11.32) элементарная квантовая теория излучения черного тела не в состоянии. Эйнштейн показал, еще до развития квантовой теории излучения, что статистическое равноресие между излучением и веществом возможно только в том случае, когда наряду с вынужденным испусканием, пропорциональным плотности излучения, имеется спонтанное излучение, происходящее и в отсутствие внешнего излучения. Спонтанное излучение обусловлено взаимодействием атомной системы с нулевыми колебаниями электромагнитного поля. Эйнштейн показал, еще до развития квантовой теории излучения, что статистическое равновесие между излучением и веществом возможно только в том случае, когда наряду с вынужденным испусканием, пропорциональным плотности излучения, имеется спонтанное излучение, происходящее и в отсутствие внешнего излучения. Спонтанное излучение обусловлено взаимодействием атомной системы с нулевыми колебаниями электромагнитного поля. Штарк и Эйнштейн, исходя из квантовой теории излучения, в начале XX века дали формулировку второго закона фотохимии: каждая молекула, участвующая в фотохимической реакции, поглощает один квант излучения, который вызывает реакцию. Последнее связано с чрезвычайно малой вероятностью повторного поглощения кванта возбужденными молекулами, ввиду их низкой концентрации в веществе. Выражение для коэффициента поглощения получают на основе квантовой теории излучения. Для микроволновой области оно представляет сложную функцию, зависящую от квадрата частоты перехода, формы линии, температуры, числа молекул на нижнем энергетическом уровне и квадрата матричного элемента дипольно-го момента перехода

25 Теория излучения Эйнштейна и генерация света

Эйнштейн начинает с рассмотрения одной трудности в теории излучения черного тела. Если представить, что электромагнитные осцилляторы, которыми являются молекулы тела, подчиняются законам классической статистики Максвелла - Больцмана, то каждый такой осциллятор в среднем будет обладать энергией:


где R - постоянная Клапейрона, N - число Авогадро. Используя соотношение Планка между средней энергией осциллятора и объемной плотностью энергии, находящейся с ним в равновесном излучении:

где Eν - средняя энергия осциллятора частоты v, L - скорость света, ρ - объемная плотность энергии излучения, Эйнштейн пишет равенство:


Из него он находит объемную плотность энергии:


«Это соотношение, - пишет Эйнштейн, - найденное при условии динамического равновесия, не только противоречит опыту, но и утверждает, что в нашей картине не может быть и речи о каком-либо однозначном распределении энергии между эфиром и веществом». В самом деле, суммарная энергия излучения оказывается бесконечной:

К аналогичному выводу в том же, 1905 г. пришли независимо друг от друга Рэлей и Джине. Классическая статистика приводит к закону излучения, резко противоположному опыту. Эта трудность получила название «ультрафиолетовая катастрофа».

Эйнштейн указывает, что формула Планка:


переходит для больших длин волн и больших плотностей излучения в найденную им формулу:


Эйнштейн подчеркивает, что значение числа Авогадро совпадает со значением, найденным другим способом. Обращаясь далее к закону Вина, хорошо оправдывающегося для больших значений ν/T, Эйнштейн получает выражение энтропии излучения:

«Это равенство показывает, что энтропия монохроматического излучения достаточно малой плотности зависит от объема так же, как энтропия идеального газа или разбавленного раствора».

Переписав это выражение в виде:


и сравнивая его с законом Больцмана:

S-S0= (R/N) lnW,

Эйнштейн находит выражение вероятности того, что энергия излучения в объеме V0 сосредоточится в части объема V:

Три варианта генерации света

Принципиально различают три способа генерации света: термоизлучение, газовый разряд высокого и низкого давления.

· Термоизлучение - излучение нагреваемого провода до максимальной темпе­ ратуры при прохождении электрического тока. Образцом является солнце с температурой поверхности 6000 К. Лучше всего подходит для этого элемент вольфрам с наивысшей среди металлов температурой плавления (3683 К).

Пример: За счет термоизлучения работают лампы накаливания и галогенные лампы накаливания.

· Газовый дуговой разряд появляется в закрытой стеклянной емкости, наполненной инертными газами, парами металла и редкоземельными элементами при подаче напряжения. Возникающие при этом свечения газообразных наполнителей дают желаемую цветность света.

Пример: За счет газового дугового разряда работают ртутные, металлогалогенные и натриевые лампы.

· Люминесцентный процесс. Под действием электрического разряда закаченные в стеклянную трубку пары ртути начинают излучать невидимые ультрафиолетовые лучи, которые, попадая на нанесенный на внутреннюю поверхность стекла люминофор, преобразуется в видимый свет.

Пример: За счет люминесцентного процесса работают люминесцентные лампы, ком­пактные люминесцентные лампы.

26) СПЕКТРАЛЬНЫЙ АНАЛИЗ - совокупность методов определения элементногои молекулярного состава и строения веществ по их спектрам. С помощью С. <а. определяют как осн. компоненты, составляющие 50- 60% вещества анализируемыхобъектов, так и незначит. примеси в них (до и менее). С. а. - наиб. распространённый аналитич. метод, св. 20- 30% всеханализов выполняется с помощью этого метода, в т. ч. контроль состава сплавовв металлургии, автомоб. и авиац. пром-сти, технологии переработки руд, <анализ экологич. объектов и материалов высокой чистоты, хим., биол. и мед. <исследования. Особо важное значение С. а. имеет при поисках полезных ископаемых.

Основа С. а.- спектроскопия атомов и молекул; его классифицируютпо целям анализа и типам спектров. В атомном С. а. (АСА) определяют элементныйсостав образцов по атомным (ионным) спектрам испускания и поглощения; вмолекулярном С. а. (МСА) - молекулярный состав вещества по молекулярнымспектрам поглощения, испускания, отражения, люминесценции и комбинационногорассеяния света. Эмиссионный С. а. проводят по спектрам испусканиявозбуждённых атомов, ионов и молекул. Абсорбционный С. а. осуществляютпо спектрам поглощения анализируемых объектов. В С. а. часто сочетают неск. <спектральных методов, а также применяют др. аналитич. методы, что расширяетвозможности анализа. Для получения спектров используют разл. типы спектральныхприборов в зависимости от целей и условий анализа. Обработка эксперим. <данных может производиться на ЭВМ, встроенных в спектральный прибор. Атомный спектральный анализ Различают два осн. варианта атомногоС. а.- атомно-эмиссионный (АЭСА) и атомно-абсорбционный (ААА). Атомно-эмиссионный спектральный анализ основан на зависимости 1 =f(с) интенсивности 1 спектральной линии испускания (эмиссии)определяемого элемента х от его концентрации в анализируемом объекте: где -вероятность квантового перехода из состояния q в состояние р,n q - концентрация атомов, находящихся в состоянии q висточнике излучения (исследуемом веществе), - частота квантового перехода. Если в зоне излучения выполняется локальноетермодинамическое равновесие,концентрация электронов п e 14 -10 15 и их распределение по скоростям максвелловское, <то где n а - концентрация невозбуждённых атомов определяемогоэлемента в области излучения, g q - статистический вес состояния q,Z - статистическая сумма по состояниям q, причём энергия возбуждения уровня q. Т. о., искомая концентрация n а - ф-ция темп-ры, к-рая практически не может строго контролироваться. Поэтомуобычно измеряют интенсивность аналитич. линии относительно нек-рого внутр. <стандарта, присутствующего в анализируемом объекте в известной концентрацииn ст. Если стандартная линия близка к аналитической, то (K - постоянная величина). Эта зависимость используется в С. а. в тех случаях, <когда отсутствует самообращение используемых линий.

В АЭСА применяются в осн. спектральные приборы с фоторегистрацией(спектрографы) и фотоэлектрич. регистрацией (квантометры). Излучение исследуемогообразца направляется на входную щель прибора с помощью системы линз, попадаетна диспергирующее устройство (призма или дифракц. решётка) и после монохроматизациифокусируется системой линз в фокальной плоскости, где располагается фотопластинкаили система выходных щелей (квантометр), за к-рыми установлены фотоэлементыили фотоумножители. При фоторегистрации интенсивности линий определяютпо плотности почернения S, измеряемой микрофотометром: где р - т. н. константа Шварцшильда, - фактор контрастности; t - время экспозиции. В АЭСА исследуемое вещество должно находиться в состоянии атомного газа. <Обычно атомизация и возбуждение атомов осуществляются одновременно - висточниках света. Для анализа металлов, сплавов и др. проводников чащевсего используют дуговой разряд или искровой разряд,гдев качестве электродов служат сами анализируемые пробы. Дуговой разряд применяетсяи для анализа непроводящих веществ. В этом случае порошкообразную пробупомещают в углубление в графитовом электроде (метод испарения) или с помощьюразл. устройств вводят порошок в плазму дугового разряда между горизонтальнорасположенными графитовыми электродами. Применяется также введение порошкообразныхпроб в дуговые плазмотроны. При АЭСА растворов в качестве источников возбуждающего света применяютпламя горючих газов (смеси ацетилен - кислород, ацетилен - закись азотаи др.). В качестве источников света начали использовать также безэлектродныйразряд и особенно индуктивносвязанную плазму. Во всех случаях растворв виде аэрозоля потоком аргона вводят в зону возбуждения спектра (темп-ра2500-3000 К в пламенах и 6000- 10000 К в плазме разряда), где происходитвысушивание, испарение и атомизация аэрозоля. Процесс атомизации в методах АЭСА обычно носит термич. характер, чтопозволяет сделать нек-рые обобщения. В реальных условиях, учитывающих кинетикупроцесса, для частиц, находящихся в зоне с темп-рой ТT кип (T кип - темп-pa кипения), зависимость кол-ва испарившихсячастиц от времени описывается ур-нием: где r - радиус частицы, D - коэф. диффузии, -поверхностное натяжение раствора, р- давление насыщенных паров, М- мол. масса, - плотность. Пользуясь этим ур-нием, можно найти кол-во вещества, испарившеесяза время t.

Если при этом молекула состоит из элементов п 1 и n 2 ,то степень атомизации может быть рассчитана по ур-нию: где М 1 и M 2 - ат. массы элементов п 1 и n 2 ; Z 1 и Z 2 - статистич. <суммы по состояниям этих элементов, M МОЛ - мол. массаатомизирующейся молекулы, Z 3 - статистич. сумма по еёсостояниям, -энергия диссоциации молекулы. Такого типа расчёты позволяют найти концентрациюатомов определяемого элемента п а в ур-нии (2) и определитьеё связь с интенсивностью аналитич. линии. Необходимость учитывать взаимодействиеопределяемого элемента с окружающей средой, др. компонентами анализируемоговещества, ионизацию атомов определяемого элемента и др. эффекты значительноусложняет картину испарения и атомизации исследуемого вещества. С цельюоблегчения С. а. создаются спец. программы расчёта на ЭВМ достаточно сложныхреакций в газовой и конденсированных фазах при заданных темп-ре идавлении. В источниках излучения чаще всего не соблюдается термодинамич. равновесие, <поэтому эти расчёты могут использоваться лишь при выборе оптим. условийанализа. В АЭСА применяют эмпирич. метод, заключающийся в эксперим. построениианалитич. ф-ции с помощью серии стандартных образцов анализируемого материала с заранееточно известными содержаниями определяемого элемента. Такие образцы либоизготовляют специально, либо заранее в неск. образцах устанавливают концентрациюэтого элемента точными методами. Измеряя затем аналитич. сигнал , находят содержание определяемого элемента в пробе. Структура и физ.-хим. свойства анализируемого и стандартного объектовмогут оказаться неадекватными (различны, напр., условия парообразованиястепени атомизации, условий возбуждения). Эти различия приходится учитыватьпри С. а. В таких случаях используют метод факторного статистич. планированияэксперимента. В результате экспериментов получают т. н. ур-ния регрессии, <учитывающие влияние на интенсивность аналитич. линий концентраций всехэлементов, составляющих пробу, и устанавливают концентрацию анализируемогоэлемента с помощью этих ур-ний. Совр. многоканальные квантометры позволяютодновременно измерять интенсивность большого числа спектральных линий. <На основе этих эксперим. данных с помощью ЭВМ можно решать довольно сложныеслучаи анализа, однако за счёт измерения неск. линий случайная погрешностьопределения С. возрастает. Атомно-абсорбционный анализ (ААА) основан на зависимости аналитич. сигнала(абсорбционности) (где - интенсивности падающего и прошедшего сквозь образец света) от концентрации(Бугера- Ламберта - Берa закон): где k v - коэф. поглощения на частоте v, l - эфф. <длина светового пути в области поглощения, п - концентрация атомованализируемого элемента в парах. Схема установки ААА включает: независимый источник излучения света счастотой v, равной частоте аналитич. линии определяемого элемента; атомизатор, <преобразующий пробу в атомарный пар; спектрофотометр. Свет, прошедший сквозьатомный пар, системой линз направляется на входную щель спектрофотометра, <интенсивность аналитич. спектральной линии на выходе регистрируется фотоэлектрич. методом. Поскольку естественнаяширина спектральной линии, постоянна, зависит только от времени жизнивозбуждённого состояния и обычно пренебрежимо мала, разница контуров линиииспускания и поглощения определяется в осн. допплеровским и лоренцевским уширениями: (здесь р - давление, с - скорость света, т - атомная, М- молекулярная массы, - эфф. сечение столкновений, приводящих к уширению, К -константа).Т. о., ширины контуров линий поглощения и испускания могут быть различнымив зависимости от давления, темп-ры и состава газовой фазы в источнике излученияи в поглощающей ячейке, что отразится на виде ф-ции и может привести к неоднозначности результатов С. а. До нек-рой степениэто удаётся устранить достаточно сложными приёмами. В методе Уолша применяютлампы с полым катодом (ЛПК), к-рые излучают спектральные линии значительноболее узкие, чем линии поглощения атомов определяемых элементов в обычныхпоглощающих ячейках. В результате зависимость в довольно широких пределах значений А (0 -0,3) оказывается простойлинейной ф-цией. В качестве атомизатора в ААА используют разл. пламена на основе смесейводород - кислород, ацетилен - воздух, ацетилен - закись азота и др. Анализуподвергают аэрозоль раствора пробы, вдуваемый в горящее пламя. Последовательноизмеряют интенсивности и I 0 света, прошедшего сквозь пламя во время подачи аэрозоляи без его подачи. В совр. приборах измерение автоматизировано. В нек-рых случаях процессы испарения и последующей атомизациипробы из-за низкой темп-ры пламён (Т ~3000 К) в газовой фазе происходятне полностью. Процессы испарения частиц аэрозоля и степень атомизации впламени сильно зависят также от состава пламени (соотношения горючего иокислителя), а также от состава раствора аэрозоля. Хорошую воспроизводимостьаналитич. сигнала (в лучших случаях S r составляет 0,01-0,02)удаётся получать, применяя в качестве источников ЛПК, излучение к-рогообладает высокой стабильностью, и осуществляя процессы испарения и атомизациив пламени.

27) Естественная ширина линии излучения. Доплеровское уширение линии излучения в газообразных средах .ЕСТЕСТВЕННАЯ ШИРИНА СПЕКТРАЛЬНОЙ ЛИНИИ- ширина спектральной линии, обусловленная спонтанными квантовыми переходами изолированной квантовой системы (атома, молекулы, ядра и т. д.). Е. ш. с. л. наз. также радиац. шириной. В соответствии с принципом неопределённости возбуждённые уровни i энергии квантовой системы, обладающие конечным временем жизни t i , являются квазидискретными и имеют конечную (малую) ширину (см. Ширина уровня).Энергия возбуждённого уровня равна - суммарная вероятность всех возможных спонтанных квантовых переходов с уровня i (А ik - вероятность перехода на уровень k; см.Эйнштейна коэффициенты).Если уровень энергии j, на к-рый переходит квантовая система, также является возбуждённым, то Е. ш. с. л. равна (Г i j ). Вероятность dw ij излучения фотонов в интервале частот d w при переходе i-j определяется ф-лой: Для резонансных линий атомов и ионов Е. ш. с. л. равна: где f ij - сила осциллятора перехода i-j , она очень мала по сравнению с частотой перехода w ij : Г/w ij ~ a 3 (z+1) 2 (здесь a=1/137 - постоянная тонкой структуры, z - кратность заряда иона). Особенно малой шириной обладают запрещённые линии. Естественная ширина линии классич. осциллятора с зарядом е , массой т и собств. частотой w 0 равна: Г= 2еw 2 0 /3mс 3 . Радиац. затухание приводит также к очень небольшому смещению максимума линии в сторону меньших частот ~Г 2 /4w 0 . Спонтанные квантовые переходы, определяющие конечную ширину уровней энергии и Е. ш. с. л., не всегда происходят с испусканием фотонов. Доплеровское уширение спектральной линии. Это уширение связано с эффектом Доплера, т. е. с зависимостью наблюдаемой частоты излучения от скорости движения излучателя. Если источник, создающий в неподвижном состоянии монохроматическое излучение с частотой, движется со скоростью в сторону к наблюдателю так, что проэкция скорости на направление наблюдения составляет, то наблюдатель регистрирует более высокую частоту излучения. где с - фазовая скорость распространения волны; 0 - угол между направлениями скорости излучателя и наблюдения. В квантовых системах источниками излучения являются атомы или молекулы. В газообразной среде при термодинамическом равновесии скорости частиц распределены по закону Максвелла- Больцмана. Поэтому и форма спектральной линии всего вещества – будет связана с этим распределением. В спектре, регистрируемом наблюдателем, должен быть непрерывный набор частиц, так как разные атомы движутся с разными скоростями относительно наблюдателя. Учитывая лишь проекции скорости в распределении Максвелла- Больцмана, можно получить следующее выражение для формы доплеровской спектральной линии: Эта зависимость является гауссовой функцией. Соответствующая значению ширина линии. С увеличением массы частиц М и понижением температуры Т ширина линии уменьшается. Вследствие эффекта Доплера спектральная линия всего вещества не совпадает со спектральной линией отдельной частицы. Наблюдаемая спектральная линия вещества представляет собой суперпозицию спектральных линий всех частиц вещества, т. е. линий с различными центральными частотами. Для лёгких частиц при обычной температуре ширина доплеровской линии в оптическом диапазоне может превышать естественную ширину линии на несколько порядков и достигать значения более1ГГц. Процесс, при котором форма спектральной линии всего вещества не совпадает с формой спектральной линии каждой частицы, называют неоднородным уширением спектральной линии. В рассмотренном случае причиной неоднородного уширения был эффект Доплера. Форма доплеровской спектральной линии описывается гауссовой функцией. Если распределение скоростей частиц отличается от максвелловского, то и форма доплеровской спектральной линии будет отличаться от гауссовой функции, но уширение останется неоднородным.

28 Лазеры: принципы работы, основные характеристики и применение

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча.

Основной физический процесс, определяющий действие лазера, – это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы).

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Лазеры нашли широкое применение, и в частности используются в промышленности для различных видов обработки материалов: металлов, бетона, стекла, тканей, кожи и т. п.

Лазерные технологические процессы можно условно разделить на два вида. Первый из них использует возможность чрезвычайно тонкой фокусировки лазерного луча и точного дозирования энергии, как в импульсном, так и в непрерывном режиме. В таких технологических процессах применяют лазеры сравнительно невысокой средней мощности: это газовые лазеры импульсно – периодического действия. С помощью последних были разработаны технология сверления тонких отверстий в рубиновых и алмазных камнях для часовой промышленности и технология изготовления фильеров для протяжки тонкой проволоки. Основная область применения маломощных импульсных лазеров связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности.

Второй вид лазерной технологии основан на применении лазеров с большой средней мощностью: от 1кВт и выше. Мощные лазеры используют в таких энергоемких технологических процессах, как резка и сварка толстых стальных листов, поверхностная закалка, направление и легирование крупногабаритных деталей, очистка зданий от поверхностных загрязненней, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электроннолучевой сварке, а это очень важно в конвейерном производстве.

Мощная лазерная технология нашла применение в машиностроении, автомобильной промышленности, промышленности строительных материалов. Она позволяет не только повысить качество обработки материалов, но и улучшить технико-экономические показатели производственных процессов.

Газовые лазеры представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме. Большие мощности необходимы для многих экспериментов при изучении нелинейных оптических свойств материалов.

Особенности газовых лазеров большей часто обусловлены тем, что они, как правило, являются источниками атомных или молекулярных спектров. Поэтому длины волн переходов точно известны, они определяются атомной структурой и обычно не зависят от условий окружающей среды.

ПОЛУПРОВОДНИКОВЫЕ ЛАЗЕРЫ - Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель (МО).

30 . Открытые оптические резонаторы. Продольные моды. Поперечные моды. Дифракционная устойчивость

В 1958 г. Прохоровым А.М. (СССР) и независимо от него Р.Дикке, А.Шавловым, Ч.Таунсом (США) была обоснована идея о возможности применения в оптическом диапазоне открытых резонаторов вместо объемных. Такие резонаторы называются открытыми оптическими или просто оптическими , L >> l

Если m = n = const, то

Полученный набор резонансных частот относится к так называемым продольным (или аксиальным) модам . Аксиальными модами называют колебания, распространяющиеся строго вдоль оптической оси резонатора. Они обладают наивысшей добротностью. Продольные моды отличаются одна от другой лишь частотой и распределением поля вдоль оси Z (т.е. разность между соседними частотами постоянна и зависит только от геометрии резонатора)

Моды с разными индексами m и n будут различаться распределением поля в плоскости, перпендикулярной к оси резонатора, т.е. в поперечном направлении.Поэтому их называют поперечными (или неаксиальными) модами . Для поперечных мод, отличающихся индексами m и n, структура поля будет различной в направлении осей x и y соответственно.

Разность частот поперечных мод с индексами m и n, отличающимися на 1, равна:

можно представить в виде:

где NF-число Френеля, .

Каждой поперечной моде соответствует бесконечное количество продольных, отличающихся индексом g.

Моды, характеризующиеся одними и теми же индексами m и n, но разными g, объединяются под общим названием поперечные моды. Колебание, соответствующее определенному g, называют продольной модой, относящейся к данной поперечной моде.

В теории открытых резонаторов принято обозначать отдельные моды как ТЕМmnq, где m, n –поперечные индексы моды, g- продольный индекс. Обозначению ТЕМ соответствует английское словосочетание Transvers Electromagnetic (Поперечные электромагнитные колебания, которые имеют пренебрежимо малые проекции векторов Е и Н на ось Z). Поскольку число g очень велико, часто индекс g опускают и моды резонатора обозначают ТЕМmn. Каждый тип поперечной моды ТЕМmn обладает определенной структурой поля в поперечном сечении резонатора и образует определенную структуру светового пятна на зеркалах резонатора (рис.1.8). В отличие от объемного резонатора моды открытого можно визуально наблюдать.

Дифракционные потери реальных мод оказываются существенно меньше благодаря тому, что при многократных проходах излучения между зеркалами происходит «естественный» отбор тех мод, у которых максимум амплитуды поля находится в центре зеркал. Таким образом, в открытом резонаторе при наличии дифракционных потерь не может существовать истинных мод, т.е. стационарных конфигураций электромагнитного поля типа стоячих волн, подобных существующим в объемном резонаторе. Однако имеется определенное число типов колебаний, обладающих малыми дифракционными потерями (их иногда называют квазимодами или модами открытых резонаторов). Поле этих колебаний (мод) сконцентрировано вблизи оси резонатора и практически спадает до нуля в его периферийных областях.

31 Модовый состав излучения лазерных генераторов. Режимы работы твердотельных лазеров

Модовой состав излучения существенно зависит от конструкции и размеров резонатора полупроводниковый лазер а также от величины мощности излучения полупроводниковый лазер испускает узкую спектральную линию, к-рая сужается с увеличением мощности излучения, если не появляются пульсации и многомодовые эффекты. Сужение линии ограничивается фазовыми флуктуациями, обусловленными спонтанным излучением. Эволюция спектра излучения с ростом мощности в инжекц. лазере показана на рис. 7. В од-ночастотном режиме наблюдают сужение спектральной линии до Гц; мин. значение ширины линии в полупроводниковый лазер со стабилизацией одночастотного режима с помощью селективного внеш. резонатора составляет величину 0,5 кГц. В полупроводниковый лазер путём модуляции накачки удаётся получить модулиров. излучение, напр. в форме синусоидальных пульсаций с частотой, достигающей в нек-рых случаях 10-20 ГГц, или в форме УК-импульсов субпикосекундной длительности Осуществлена передача информации с помощью полупроводниковый лазер. со скоростью 2-8 Гбит/с.

Твердоте́льный ла́зер - лазер, в котором в качестве активной среды используется вещество, находящееся в твёрдом состоянии (в отличие от газов в газовых лазерах и жидкостей в лазерах на красителях).

Рабочие схемы активных веществ твердотельных лазеров подразделяются на трех- и четырехуровневые. По какой из схем работает данный активный элемент, судят по разности энергий между основным и нижним рабочими уровнями. Чем больше эта разность, тем при более высоких температурах возможна эффективная генерация. Так, например, у иона Сг3+ основное состояние характеризуется двумя подуровнями, расстояние между которыми составляет 0,38 см-1. При такой разности энергий даже при температуре жидкого гелия (~4К) заселенность верхнего подуровня только на ~13°/0 меньше нижнего, т. е. они заселены одинаково и, следовательно, рубин - активное вещество с трехуровневой схемой при любой температуре. У иона неодима же нижний лазерный уровень для излучения при =1,06 мкм расположен на 2000 см-1 выше основного. Даже при комнатной температуре на нижнем уровне ионов неодима в 1,4 -104 раз меньше, чем на основном, и активные элементы, у которых в качестве активатора используется неодим, работают по четырехуровневой схеме.

Твердотельные лазеры могут работать в импульсном и непрерывном режимах. Различают два импульсных режима работы твердотельных лазеров: режим свободной генерации и режим с модулированной добротностью. В режиме свободной генерации длительность импульса излучения практически равна длительности импульса накачки. В режиме же с модулированной добротностью длительность импульса существенно меньше длительности импульса накачки.

32) Нелинейная оптика - раздел оптики, в котором исследуется совокупность оптических явлений, наблюдающихся при взаимодействии световых полей с веществом, у которого имеется нелинейная реакция вектора поляризации P на вектор напряженности электрического поля E световой волны. В большинстве веществ данная нелинейность наблюдается лишь при очень высоких интенсивностях света, достигаемых при помощи лазеров. Принято считать как взаимодействие, так и сам процесс линейными, если его вероятность пропорциональна первой степени интенсивности излучения. Если эта степень больше единицы, то как взаимодействие, так и процесс называются нелинейными. Таким образом возникли термины линейная и нелинейная оптика. Появление нелинейной оптики связано с разработкой лазеров, которые могут генерировать свет с большой напряженностью электрического поля, соизмеримой с напряженностью микроскопического поля в атомах. Основные причины, вызывающие различия в воздействии излучения большой интенсивности от излучения малой интенсивности на вещество: При большой интенсивности излучения главную роль играют многофотонные процессы, когда в элементарном акте поглощается несколько фотонов. При большой интенсивности излучения возникают эффекты самовоздействия приводящие к изменению исходных свойств вещества под влиянием излучения. Одним из наиболее часто используемых процессов с изменением частот является генерация второй гармоники . Это явление позволяет преобразовать выходное излучение лазера Nd:YAG лазера (1064 нм) или лазера на сапфире, легированного титаном (800 нм) в видимое, с длинами волн 532 нм (зеленое) или 400 нм (фиолетовое), соответственно. На практике для реализации удвоения частоты света в выходной пучок лазерного излучения устанавливают нелинейный оптический кристалл, ориентированный строго определённым образом.

33) Рассеяние света - рассеяние электромагнитных волн видимого диапазона при их взаимодействии с веществом. При этом происходит изменение пространственного распределения, частоты, поляризации оптического излучения, хотя часто под рассеянием понимается только преобразование углового распределения светового потока. Пусть и - частоты падающего и рассеянного света. Тогда Если - упругое рассеяние Если - неупругое рассеяние - стоксово рассеяние - антистоксово рассеяние Рассеиваемый свет даёт информацию о структуре и динамике материала. Рэлеевское рассеяние - когерентное рассеяние света без изменения длины волны (называемое также упругим рассеянием) на частицах, неоднородностях или других объектах, когда частота рассеиваемого света существенно меньше собственной частоты рассеивающего объекта или системы. Эквивалентная формулировка: рассеяние света на объектах, размеры которых меньше его длины волны. mодель взаимодействия с осциллятором комбинационного рассеяния света в спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества. Выражение для интенсивности излучения имеет вид где P - индуцированный дипольный момент, определяемый как Коэффициент пропорциональности α в этом уравнении называется поляризуемостью молекулы. Рассмотрим световую волну как электромагнитное поле напряженности Е с частотой колебаний ν 0 : где E 0 - амплитуда, a t - время.

Наконец, есть еще один способ охарактеризовать электромагнитное излучение - указав его температуру. Строго говоря, этот способ годится только для так называемого чернотельного или теплового излучения. Абсолютно черным телом в физике называют объект, поглощающий всё падающее на него излучение. Однако идеальные поглощающие свойства не мешают телу самому испускать излучение. Наоборот, для такого идеализированного тела можно точно рассчитать вид спектра излучения. Это так называемая кривая Планка, форма которой определяется единственным параметром - температурой. Знаменитый горб этой кривой показывает, что нагретое тело мало излучает как на очень длинных, так и на очень коротких волнах. Максимум излучения приходится на вполне определенную длину волны, значение которой прямо пропорционально температуре.

Указывая эту температуру, нужно иметь в виду, что это не свойство самого излучения, а лишь температура идеализированного абсолютно черного тела, которое на данной волне имеет максимум излучения. Если есть основание считать, что излучение испущено нагретым телом, то, найдя максимум в его спектре, можно приближенно определить температуру источника. Например, температура поверхности Солнца составляет 6 тысяч градусов. Это как раз соответствует середине видимого диапазона излучения. Вряд ли это случайно - скорее всего, глаз за время эволюции приспособился максимально эффективно использовать солнечный свет.

Неоднозначность температуры

Точка спектра, на которую приходится максимум чернотельного излучения, зависит от того, на какой оси мы строим график. Если по оси абсцисс равномерно откладывать длину волны в метрах, то максимум будет приходиться на

λ max = b /T = (2,9·10 –3 м ·К )/T ,

где b = 2,9·10 –3 м ·К . Это так называемый закон смещения Вина. Если построить тот же спектр, равномерно отложив на оси ординат частоту излучения, местоположение максимума вычисляется по формуле:

ν max = (αk/h ) · T = (5,9·10 10 Гц /К ) · Т ,

где α = 2,8, k = 1.4·10 –23 Дж /К - постоянная Больцмана, h - постоянная Планка.

Все было бы хорошо, но, как выясняется λ max и ν max ·соответствуют разным точкам спектра. Это становится очевидно, если вычислить длину волны, соответствующую ν max , то получится:

λ" max = с max = (сh k )/T = (5,1·10 –3 м·К)/Т .

Таким образом, максимум спектра, определенный по частоте, в λ" max max = 1,8 раза отличается по длине волны (а значит и по частоте) от максимума того же спектра, определенного по длинам волн. Иными словами, частота и длина волны максимума чернотельного излучения не соответствуют друг другу: λ max с max .

В видимом диапазоне принято указывать максимум спектра теплового излучения по длине волны. В спектре Солнца, как уже говорились, он приходится на видимый диапазон. Однако по частоте максимум солнечного излучения лежит в ближнем инфракрасном диапазоне.

А вот максимум космического микроволнового излучения с температурой 2,7 К принято указывать по частоте - 160 МГц , что соответствует длине волны 1,9 мм . Между тем, в графике по длинам волн максимум реликтового излучения приходится на 1,1 мм .

Всё это показывает, что температуру надо с большой осторожностью использовать для описания электромагнитного излучения. Ее можно применять только в случае излучения, близкого по спектру к тепловому, либо для очень грубой (с точностью до порядка) характеристики диапазона. Например, видимому излучению соответствует температура в тысячи градусов, рентгену - миллионы, микроволновому - около 1 кельвина.