Взорвалась вблизи Нагасаки. Смерть и разрушения сопровождаемые этими взрывами были беспрецедентными. Страх и ужас охватил все Японское население, вынудив сдаться их меньше чем через месяц.

Однако после завершения второй мировой войны атомное оружие не отошло на второй план. Начавшаяся холодная война стала огромным психологическим фактором давления между СССР и США. Обе стороны инвестировали огромные средства в разработку и создание новых атомных . Таким образом, на нашей планете за 50 лет накопилось несколько тысяч атомных снарядов. Этого вполне достаточно, чтобы несколько раз уничтожить все живое на . По этой причине в конце 90-х годов между США и Россией был подписан первый договор по разоружению, чтобы снизить опасность всемирной катастрофы. Не смотря на это, в настоящее время 9 стран обладают ядерным оружием, ставя свою оборону на иной уровень. В этой статье мы рассмотрим, из-за чего атомное оружие получило свою разрушительную мощь и как устроена атомная .

Для того, чтобы понять всю мощь атомных бомб необходимо разобраться с понятием радиоактивности. Как известно, наименьшей структурной единицей материи, из которой состоит весь мир вокруг нас, является атом. Атом в свою очередь состоит из ядра и вращающихся вокруг него . Ядро состоит из нейтронов и протонов. Электроны имеют отрицательный заряд, а протоны положительный. Нейтроны, как следует из их названия, – нейтральны. Обычно число нейтронов и протонов равно числу электронов в одном атоме. Однако под действием внешних сил число частиц в атомах вещества может измениться.

Нас интересует лишь вариант, когда изменяется число нейтронов, при этом образуется изотоп вещества. Некоторые изотопы вещества устойчивы и встречаются в природе, а некоторые – нестабильны и стремятся распасться. Например, углерод имеет 6 нейтронов. Также, встречается изотоп углерода с 7 нейтронами – достаточно устойчивый элемент, встречающий в природе. Изотоп углерода с 8 нейтронами – это уже нестабильный элемент и стремиться распасться. Это и есть радиоактивный распад. При этом нестабильные ядра, излучают лучи трех видов:

1. Альфа-лучи – достаточно безобидное в виде потока альфа-частиц, которое можно остановить с помощью тонкого листа бумаги и оно не может причинить вред

Даже если живые организмы смогли перенести первые две , то волна радиации вызывает очень скоротечную лучевую болезнь, убивающую за считанные минуты. Такое поражение возможно в радиусе нескольких сотен метров от взрыва. До нескольких километров от взрыва лучевая болезнь убьет человека за несколько часов или дней. Те, кто находился за пределами непосредственного взрыва, также могут получить дозу радиации, употребляя в пищу продукты и , а также вдыхая из зараженной зоны. Причем радиация не улетучивается мгновенно. Она накапливается в окружающей среде и может отравлять живые организмы еще долгие десятилетия после взрыва.

Вред от ядерного оружия слишком опасен, чтобы использовать его в любых условиях. От него неизбежно страдает мирное население и природе наносится непоправимый ущерб. Поэтому главное применение ядерных бомб в наше время – это сдерживание от нападения. Даже испытания ядерного оружия в настоящее время запрещены на большей части нашей планеты.

Атомная бомба - снаряд для получения взрыва большой силы в результате весьма быстрого выделения ядерной (атомной) энергии.

Принцип действия атомных бомб

Ядерный заряд разделён на несколько частей до критических размеров, чтобы в каждой из них не могла начаться саморазвивающаяся неуправляемая цепная реакция делений атомов делящегося вещества. Такая реакция возникнет лишь тогда, когда все части заряда будут быстро соединены в одно целое. От скорости сближения отдельных частей в сильной степени зависит полнота протекания реакции и в конечном счёте мощность взрыва. Для сообщения большой скорости частям заряда можно использовать взрыв обычного взрывчатого вещества. Если части ядерного заряда расположить по радиальным направлениям на некотором расстоянии от центра, а с внешней стороны поместить заряды тротила, то можно осуществить взрыв обычных зарядов, направленный к центру ядерного заряда. Все части ядерного заряда не только с огромной скоростью соединяться в единое целое, но и окажутся на некоторое время сжатыми со всех сторон огромным давлением продуктов взрыва и не смогут разделиться сразу, как только начнётся в заряде цепная ядерная реакция. В результате этого произойдёт значительно большее деление, чем без такого сжатия, и, следовательно, повысится мощность взрыва. Увеличению мощности взрыва при том же количестве делящегося вещества способствует также отражатель нейтронов (наиболее эффективными отражателями являются бериллий < Be >, графит, тяжёлая вода < H3O >). Для первого деления, которое положило бы начало цепной реакции, нужен, по меньшей мере, один нейтрон. Рассчитывать на своевременное начало цепной реакции под действием нейтронов, появляющихся при самопроизвольном (спонтанном) делении ядер, нельзя, т.к. оно происходит сравнительно редко: для U-235 - 1 распад в час на 1 гр. вещества. Нейтронов, существующих в свободном виде в атмосфере, также очень мало: через S = 1см/кв. за секунду пролетает в среднем около 6 нейтронов. По этой причине в ядерном заряде применяют искусственный источник нейтронов - своеобразный ядерный капсюль-детонатор. Он обеспечивает также множество начинающихся одновременно делений, поэтому реакция протекает в виде ядерного взрыва.

Варианты детонации (Пушечная и имплозивная схемы)

Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой -- неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится надкритической.

Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (т. н. «шипучка», англ. Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.

Имплозивная схема. Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток -- ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками)

    А вот этого-то мы зачастую и не знаем. И почему ядерная бомба взрывается, тоже…

    Начнём издалека. У каждого атома есть ядро, а ядро состоит из протонов и нейтронов – это знают, пожалуй, все. Точно так же все видели таблицу Менделеева. Но почему химические элементы в ней размещены именно так, а не иначе? Уж наверняка не потому, что Менделееву так захотелось. Порядковый номер каждого элемента в таблице указывает на то, сколько протонов находится в ядре атома этого элемента. Иными словами, железо стоит 26-м номером в таблице, потому что в атоме железа 26 протонов. А если их не 26, это уже не железо.

    Но вот нейтронов в ядрах одного и того же элемента может быть разное количество, а значит, и масса у ядер бывает разная. Атомы одного и того же элемента с разной массой называются изотопами. У урана таких изотопов несколько: самый распространённый в природе – уран-238 (в его ядре 92 протона и 146 нейтронов, вместе получается 238). Он радиоактивен, но ядерную бомбу из него не изготовишь. А вот изотоп уран-235, небольшое количество которого есть в урановых рудах, для ядерного заряда годится.

    Возможно, читатель сталкивался с выражениями «обогащённый уран» и «обеднённый уран». В обогащённом уране больше урана-235, чем в природном; в обеднённом, соответственно – меньше. Из обогащённого урана можно получить плутоний – другой элемент, пригодный для ядерной бомбы (в природе он почти не встречается). Как обогащают уран и как из него получают плутоний – тема отдельного разговора.

    Итак, почему ядерная бомба взрывается? Дело в том, что некоторые тяжёлые ядра имеют свойство распадаться, если в них попадёт нейтрон. А уж свободного нейтрона долго ждать не придётся – их вокруг очень много летает. Итак, попадает такой нейтрон в ядро урана-235 и тем самым разбивает его на «осколки». При этом высвобождается ещё несколько нейтронов. Догадываетесь, что произойдёт, если вокруг будут ядра того же элемента? Правильно, произойдёт цепная реакция. Вот так это происходит.

    В ядерном реакторе, где уран-235 «растворён» в более стабильном уране-238, взрыва при нормальных условиях не происходит. Большинство нейтронов, которые вылетают из распадающихся ядер, улетает «в молоко», не находя ядер урана-235. В реакторе распад ядер идёт «вяло» (но этого хватает, чтобы реактор давал энергию). Вот в цельном куске урана-235, если он будет достаточной массы, нейтроны будут гарантированно разбивать ядра, цепная реакция пойдёт лавиной, и… Стоп! Ведь если изготовить кусок урана-235 или плутония нужной для взрыва массы, он сразу же и взорвётся. Это не дело.

    А если взять два куска докритической массы, и столкнуть их друг с другом при помощи механизма на дистанционном управлении? Например, поместить оба в трубку и к одному прикрепить пороховой заряд, чтобы в нужный момент выстрелить одним куском, как снарядом, в другой. Вот и решение проблемы.

    Можно поступить иначе: взять шарообразный кусок плутония и по всей его поверхности закрепить взрывные заряды. Когда эти заряды по команде извне сдетонируют, их взрыв сожмёт плутоний со всех сторон, сдавит его до критической плотности, и произойдёт цепная реакция. Однако тут важны точность и надёжность: все взрывные заряды должны сработать одновременно. Если часть из них сработает, а часть – нет, или часть сработает с опозданием, никакого ядерного взрыва не выйдет: плутоний не сожмётся до критической массы, а рассеется в воздухе. Вместо ядерной бомбы получится так называемая «грязная».

    Так выглядит ядерная бомба имплозионного типа. Заряды, которые должны создать направленный взрыв, выполнены в форме многогранников, чтобы как можно плотнее охватить поверхность плутониевой сферы.

    Устройство первого типа назвали пушечным, второго типа – имплозионным.
    Бомба «Малыш», сброшенная на Хиросиму, имела заряд из урана-235 и устройство пушечного типа. Бомба «Толстяк», взорванная над Нагасаки, несла плутониевый заряд, а взрывное устройство было имплозионным. Сейчас устройства пушечного типа почти не используются; имплозионные сложнее, но в то же время позволяют регулировать массу ядерного заряда и расходовать его более рационально. Да и плутоний как ядерная взрывчатка вытеснил уран-235.

    Прошло совсем немного лет, и физики предложили военным ещё более мощную бомбу – термоядерную, или, как её ещё называют, водородную. Получается, водород взрывается сильнее плутония?

    Водород действительно взрывоопасен, но не настолько. Впрочем, «обычного» водорода в водородной бомбе нет, в ней используются его изотопы – дейтерий и тритий. У ядра «обычного» водорода один нейтрон, у дейтерия – два, у трития – три.

    В ядерной бомбе ядра тяжёлого элемента делятся на ядра более лёгких. В термоядерной идёт обратный процесс: лёгкие ядра сливаются друг с другом в более тяжёлые. Ядра дейтерия и трития, к примеру, соединяются в ядра гелия (иначе называемые альфа-частицами), а «лишний» нейтрон отправляется в «свободный полёт». При этом выделяется значительно больше энергии, чем при распаде ядер плутония. Кстати, именно этот процесс идёт на Солнце.

    Однако реакция слияния возможна только при сверхвысоких температурах (почему она и называется ТЕРМОядерной). Как заставить дейтерий и тритий вступить в реакцию? Да очень просто: нужно использовать как детонатор ядерную бомбу!

    Поскольку дейтерий и тритий сами по себе стабильны, их заряд в термоядерной бомбе может быть сколь угодно огромным. А значит, термоядерную бомбу можно сделать несравненно мощнее «простой» ядерной. «Малыш», сброшенный на Хиросиму, имел тротиловый эквивалент в пределах 18 килотонн, а самая мощная водородная бомба (так называемая «Царь-бомба», она же «Кузькина мать») – уже 58,6 мегатонн, более чем в 3255 раз мощнее «Малыша»!


    Облако-«гриб» от «Царь-бомбы» поднялось на высоту 67 километров, а взрывная волна трижды обогнула земной шар.

    Однако такая гигантская мощность явно избыточна. «Наигравшись» с мегатонными бомбами, военные инженеры и физики пошли по другому пути – пути миниатюризации ядерного оружия. В обычном виде ядерные боеприпасы можно сбрасывать со стратегических бомбардировщиков, как авиабомбы, или запускать с баллистическими ракетами; если же их миниатюризировать, получится компактный ядерный заряд, который не разрушает всё на километры вокруг, и который можно поставить на артиллерийский снаряд или ракету «воздух-земля». Повысится мобильность, расширится спектр решаемых задач. В дополнение к стратегическому ядерному оружию мы получим тактическое.

    Для тактического ядерного оружия разрабатывались самые разные средства доставки – ядерные пушки, миномёты, безоткатные орудия (например, американский «Дэви Крокетт»). В СССР даже был проект ядерной пули. Правда, от него пришлось отказаться – ядерные пули были так ненадёжны, так сложны и до́роги в изготовлении и хранении, что в них не было никакого смысла.

    «Дэви Крокетт». Некоторое количество этих ядерных орудий состояло на вооружении ВС США, а западногерманский министр обороны безуспешно добивался того, чтобы ими вооружили и Бундесвер.

    Говоря о малых ядерных боеприпасах, стоит упомянуть и другую разновидность ядерного оружия – нейтронную бомбу. Заряд плутония в ней невелик, но это и не нужно. Если термоядерная бомба идёт по пути наращивания силы взрыва, то нейтронная делает ставку на другой поражающий фактор – радиацию. Для усиления радиации в нейтронной бомбе есть запас изотопа бериллия, который при взрыве даёт огромное количество быстрых нейтронов.

    По замыслу её создателей, нейтронная бомба должна убивать живую силу противника, но оставлять в целости технику, которую можно потом захватить при наступлении. На практике получилось несколько иначе: облучённая техника становится непригодной к использованию – любой, кто рискнёт её пилотировать, очень скоро «заработает» себе лучевую болезнь. Это не отменяет того факта, что взрыв нейтронной бомбы способен поразить врага через танковую броню; нейтронные боеприпасы разрабатывались США именно как оружие против советских танковых соединений. Впрочем, вскоре была разработана танковая броня, обеспечивающая какую-никакую защиту и от потока быстрых нейтронов.

    Ещё один вид ядерного оружия был придуман в 1950 году, но никогда (насколько это известно) не производился. Это так называемая кобальтовая бомба – ядерный заряд с оболочкой из кобальта. При взрыве кобальт, облучённый потоком нейтронов, становится крайне радиоактивным изотопом и рассеивается по местности, заражая её. Всего одна такая бомба достаточной мощности могла бы покрыть кобальтом весь земной шар и погубить всё человечество. К счастью, этот проект остался проектом.

    Что можно сказать в заключение? Ядерная бомба – действительно страшное оружие, и вместе с тем оно (вот ведь парадокс!) помогло сохранить относительный мир между сверхдержавами. Если у твоего противника есть ядерное оружие, ты десять раз подумаешь, прежде чем на него нападать. Ни одна страна с ядерным арсеналом ещё не подвергалась атаке извне, и после 1945 года в мире не было войн между крупными государствами. Будем надеяться, что их и не будет.

Истории развития человечества всегда сопутствовали войны, как способ решения конфликтов насилием. Цивилизация перенесла более пятнадцати тысяч малых и больших вооруженных конфликтов, потери человеческих жизней исчисляются миллионами. Только в девяностых годах прошлого века случилось более ста военных столкновений, с участием девяноста стран мира.

Одновременно, научные открытия, технический прогресс позволили создавать оружие уничтожения все большей мощности и изощренности применения. В двадцатом веке пиком массового разрушительного воздействия и инструментом политики стало ядерное оружие.

Устройство атомной бомбы

Современные ядерные бомбы как средства поражения противника создаются на основе передовых технических решений, суть которых широкой огласке не придается. Но основные элементы присущие этому виду оружия, можно рассмотреть на примере устройства ядерной бомбы с кодовым названием «Толстяк», сброшенной в 1945 году на один из городов Японии.

Мощность взрыва равнялась 22.0 кт в тротиловом эквиваленте.

Она имела следующие конструктивные особенности:

  • длинна изделия составляла 3250.0 мм, при диаметре объемной части — 1520.0 мм. Общий вес более 4.5 тонн;
  • корпус представлен эллиптической формой. Во избежание преждевременного разрушения из — за попадания зенитных боеприпасов и нежелательных воздействий иного рода, для его изготовления использовалась 9.5 мм бронированная сталь;
  • корпус разделен на четыре внутренние части: нос, две половины эллипсоида (основной — отсек для ядерной начинки), хвост.
  • носовой отсек укомплектован аккумуляторными батареями;
  • основной отсек, как носовой, для предупреждения попадания вредных сред, влаги, создания комфортных условий для работы бородатчика вакуумируются;
  • в эллипсоиде размещалось плутониевое ядро, охваченное урановым тампером (оболочкой). Он играл роль инерционного ограничителя течением ядерной реакции, обеспечивая максимальную активности оружейного плутония, путем отражения нейтронов к стороне активной зоны заряда.

Внутри ядра размещали первичный источник нейтронов, носящий название инициатор или «ежик». Представлен бериллием шарообразной формы диаметром 20.0 мм с наружным покрытием на основе полония — 210.

Следует отметить, что экспертным сообществом такая конструкция ядерного боеприпаса определена, малоэффективной, ненадежной при использовании. Нейтронное инициирование неуправляемого типа в дальнейшем не использовалось.

Принцип действия

Процесс деления ядер урана 235 (233) и плутония 239 (это то, из чего состоит ядерная бомба) с огромным выделением энергии при ограничении объема — называют ядерным взрывом. Атомная структура радиоактивных металлов имеет неустойчивую форму — они постоянно делятся на другие элементы.

Процесс сопровождается отрывом нейронов, часть из которых, попадает на соседние атомы, инициируют дальнейшую реакцию, сопровождающуюся выделением энергии.

Принцип заключается следующим: сокращение время распада приводит к большей интенсивности процесса, а сосредоточение нейронов на бомбардировках ядер приводит к цепной реакции. При совмещении двух элементов до критической массы создастся сверхкритическая, приводящая к взрыву.


В бытовых условиях спровоцировать активную реакцию невозможно — нужны высокие скорости сближения элементов — не менее 2.5 км/с. Достижение этой скорости в бомбе возможно при применении комбинирующих друг друга типов взрывчатки (быстрой и медленной), балансирующих плотность сверхкритической массы, производящий атомный взрыв.

Ядерные взрывы относят к результатам деятельности человека на планете или ее орбите. Природные процессы такого рода возможны лишь на некоторых звездах космического пространства.

Атомные бомбы по праву считают самым мощным и разрушительным оружием массового поражения. Тактическое применение решает задачи по уничтожению стратегических, военных объектов наземного, а также глубинного базирования, поражения значительного скопления техники, живой силы противника.

Глобально применить можно только преследуя цель полного истребления населения и инфраструктуры на значительных территориях.

Для достижения определенных целей, выполнения задач тактического и стратегического характера подрывы атомных боеприпасов могут проводить:

  • на критических и малых высотах (выше и ниже 30.0 км);
  • в непосредственном прикосновении с земной корой (водой);
  • подземно (или подводный взрыв).

Ядерный взрыв характеризуется мгновенным выделением огромной энергии.

Приводящей к поражению объектов и человека следующим образом:

  • Ударная волна. При взрыве выше или на земной коре (воде) называют воздушной волной, под землей (водой) — сейсмовзрывной волной. Воздушная волна образуется после критичного сжатия воздушных масс и распространяется окружностью до затухания со скоростью, превышающей звук. Приводит как прямому поражению живой силы, так и косвенному (взаимодействием с осколками разрушенных объектов). Действие избыточного давления делает технику нефункциональной путем перемещения и ударов о поверхность земли;
  • Световое излучение. Источник — световая часть, образованная испарением изделия с массами воздуха, при наземном применении — паров грунта. Воздействие происходит в ультрафиолетовом и инфракрасном спектрах. Его поглощение предметами и людьми провоцирует обугливание, плавление и горение. Степень поражения зависима от удаления эпицентра;
  • Проникающая радиация — это движущееся от места разрыва нейтроны и гамма — лучи. Воздействие на биологические ткани приводит к ионизации молекул клеток, приводящих к лучевой болезни организма. Поражение имущества сопряжено с реакциями деления молекул в поражающих элементах боеприпасов.
  • Радиоактивное заражение. При наземном взрыве происходит подъем паров грунта, пыли и прочего. Возникает облако, перемещающееся в направлении движения воздушных масс. Источники поражения представлены продуктами деления активной части ядерного боеприпаса, изотопами, не разрушенными частями заряда. При движении радиоактивного облака происходит сплошное радиационное заражение местности;
  • Электромагнитный импульс. Взрыв сопровождает появление электромагнитных полей (от 1.0 до 1000 м) в виде импульса. Они приводят к выходу из строя электрических приборов, средств управления и связи.

Совокупность факторов ядерного взрыва наносит разно — уровневое поражение живой силе, технике и инфраструктуре противника, а фатальность последствий связана лишь с удалением от его эпицентра.


История создания ядерного оружия

Создание оружия с использованием ядерной реакции сопровождалось рядом научных открытий, теоретических и практических изысканий, в их числе:

  • 1905 год — создана теория относительности, утверждающая, что небольшое количество вещества соотносится значительному выделению энергии по формуле E = mc2, где «с» представляет световую скорость (автор А. Эйнштейн);
  • 1938 год — немецкими учеными проведен эксперимент по разделению атома на части путем атаки урана нейтронами, закончившийся успешно (О.Ханн и Ф. Страссманна), а физик из Великобритании дал объяснения факту выделения энергии (Р.Фриш);
  • 1939 год — ученым из Франции, что при проведении цепи реакций молекул урана выделится энергия способная произвести взрыв огромной силы (Жолио — Кюри).

Последнее и стало отправной точкой для изобретения атомного оружия. Параллельной разработкой занимались Германия, Великобритания, США, Япония. Основная проблема заключалась в добычи урана потребными объемами для проведения экспериментов в этой области.

Быстрее задачу решили в США, закупив сырье у Бельгии в 1940 году.

В рамках проекта, получившего название Манхэттен, с тридцать девятого по сорок пятый год построен завод по урановой очистке, создан центр исследования ядерных процессов, привлечены для работы в нем лучшие специалисты — физики со всей части Западной Европы.

Великобритания, ведшая собственные разработки, вынуждена была, после немецкой бомбардировки, в добровольном порядке передать наработки по своему проекту военным США.

Считается, что американцы, первые, кто изобрел атомную бомбу. Испытания первого ядерного заряда проводились в штате Нью — Мехико в июле сорок пятого года. Вспышка от взрыва затмила небо, а песчаный ландшафт превратился в стекло. Через небольшой промежуток времени созданы ядерные заряды, именуемые «Малыш» и «Толстяк».


Ядерное оружие в СССР — даты и события

Становлению СССР, как ядерной державы, предшествовала длительная работа отдельных ученых и государственных институтов. Ключевые периоды и значимые даты событий представлены следующим:

  • 1920 год считают началом работ советских ученых по делению атома;
  • С тридцатых годов направление ядерной физики становиться приоритетным;
  • Октябрь 1940 года — инициативная группа ученых — физиков выступила с предложением об использовании атомных разработок в военных целях;
  • Летом 1941 года в связи с войной институты атомной энергетики переведены в тыл;
  • Осенью 1941 года советская разведка проинформировала руководство страны о начале ядерных программ в Британии и Америке;
  • Сентябрь 1942 года — исследования атома начали делаться полным объемом, работы по урану продолжились;
  • Февраль 1943 года — создана специальная исследовательская лаборатория под руководством И. Курчатова, а общее руководство возложено на В. Молотова;

Руководил проектом В. Молотов.

  • Август 1945 года — в связи проведением ядерного бомбометания в Японии, высокой важностью разработок для СССР, создан Специальный Комитет под руководство Л. Берии;
  • Апрель 1946 года — создано КБ-11, ставшее разрабатывать образцы советского ядерного оружия в двух вариантах (с использованием плутония и урана);
  • Средина 1948 года — работы по урану прекращены из — за малой эффективности при больших затратах;
  • Август 1949 года — когда в СССР изобрели атомную бомбу, проведены испытания первой советской ядерной бомбы.

Сокращению сроков разработки изделия способствовала качественная работа разведывательных органов, сумевших получить информацию по американским ядерным разработкам. Среди тех, кто первый создал атомную бомбу в СССР, был коллектив ученых под руководством академика А. Сахарова. Они разработали более перспективные технические решения, чем используемые американцами.


Атомная бомба «РДС-1»

В 2015 — 2017 годах Россия сделала прорыв совершенствования ядерных боеприпасов и средств их доставки, тем самым заявив о государстве способном отразить любую агрессию.

Первые испытания атомной бомбы

После испытания экспериментального ядерной бомбы в штате Нью — Мексико летом сорок пятого года, последовали бомбежки японских городов Хиросимы и Нагасаки, шестого и девятого августа соответственно.

в этом году закончена разработка атомной бомбы

В 1949 году, при условиях повышенной секретности, советскими конструкторами КБ — 11 и ученым была закончена разработка атомной бомбы, носившей название РДС-1 (реактивный двигатель «С»). 29 августа на полигоне Семипалатинска прошло испытание первого советского ядерного устройства. Атомная бомба России — РДС-1 представляла собой изделие «каплевидной» формы, весом 4.6 тонн, диаметром объемной части 1.5 м, длинной 3.7 метра.

Активная часть включала плутониевый блок, позволивший достичь мощности взрыва 20.0 килотонн соразмерно тротилу. Площадка для испытаний занимала радиус двадцатью километрами. Особенности условий испытательного подрыва не обнародованы до настоящего времени.

Третьего сентября того же года американской авиационной разведкой установлено наличие в воздушных массах Камчатки следов изотопов, свидетельствующих об испытания ядерного заряда. Двадцать третьего числа, первое лицо США публично объявило, что СССР удалось испытывать атомную бомбу.

Атомное оружие – устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА.

Об Атомном оружиии

Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно - в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Современные атомные бомбы и снаряды

Радиус действия

В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный . Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра – сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное (водородное) оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т,относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.

Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.

Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Водородная бомба

Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится. Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.

Видео