Foarte ușor de reținut.

Ei bine, să nu mergem departe, să luăm imediat în considerare funcția inversă. Care funcție este inversul funcției exponențiale? Logaritm:

În cazul nostru, baza este numărul:

Un astfel de logaritm (adică un logaritm cu bază) se numește „natural” și folosim o notație specială pentru el: scriem în schimb.

Cu ce ​​este egal? Desigur, .

Derivata logaritmului natural este, de asemenea, foarte simplă:

Exemple:

  1. Aflați derivata funcției.
  2. Care este derivata functiei?

Raspunsuri: Expozant și logaritmul natural- funcțiile sunt unic simple în ceea ce privește derivatele. Funcțiile exponențiale și logaritmice cu orice altă bază vor avea o derivată diferită, pe care o vom analiza mai târziu, după hai sa trecem prin reguli diferenţiere.

Reguli de diferențiere

Reguli de ce? Din nou un nou termen, din nou?!...

Diferenţiere este procesul de găsire a derivatei.

Asta e tot. Ce altceva poți numi acest proces într-un singur cuvânt? Nu derivată... Matematicienii numesc diferenţialul acelaşi increment al unei funcţii la. Acest termen provine din latinescul diferentia - diferenta. Aici.

Când derivăm toate aceste reguli, vom folosi două funcții, de exemplu, și. Vom avea nevoie și de formule pentru incrementele lor:

Sunt 5 reguli în total.

Constanta este scoasă din semnul derivatului.

Dacă - un număr constant (constant), atunci.

Evident, această regulă funcționează și pentru diferența: .

Să demonstrăm. Să fie, sau mai simplu.

Exemple.

Aflați derivatele funcțiilor:

  1. la un punct;
  2. la un punct;
  3. la un punct;
  4. la punct.

Solutii:

  1. (derivata este aceeași în toate punctele, deoarece aceasta funcție liniară, tine minte?);

Derivat al produsului

Totul este similar aici: să introducem o nouă funcție și să găsim incrementul acesteia:

Derivat:

Exemple:

  1. Aflați derivatele funcțiilor și;
  2. Aflați derivata funcției într-un punct.

Solutii:

Derivată a unei funcții exponențiale

Acum cunoștințele tale sunt suficiente pentru a învăța cum să găsești derivata oricărei funcții exponențiale și nu doar exponenți (ai uitat încă ce este asta?).

Deci, unde este un număr.

Știm deja derivata funcției, așa că să încercăm să ne reducem funcția la o nouă bază:

Pentru aceasta vom folosi regula simpla: . Apoi:

Ei bine, a funcționat. Acum încercați să găsiți derivata și nu uitați că această funcție este complexă.

S-a întâmplat?

Iată, verifică-te:

Formula s-a dovedit a fi foarte asemănătoare cu derivata unui exponent: așa cum a fost, rămâne aceeași, a apărut doar un factor, care este doar un număr, dar nu o variabilă.

Exemple:
Aflați derivatele funcțiilor:

Raspunsuri:

Acesta este doar un număr care nu poate fi calculat fără un calculator, adică nu poate fi scris într-o formă mai simplă. Prin urmare, îl lăsăm în această formă în răspuns.

    Rețineți că aici este câtul a două funcții, așa că aplicăm regula de diferențiere corespunzătoare:

    În acest exemplu, produsul a două funcții:

Derivată a unei funcții logaritmice

Este similar aici: cunoașteți deja derivata logaritmului natural:

Prin urmare, pentru a găsi un logaritm arbitrar cu o bază diferită, de exemplu:

Trebuie să reducem acest logaritm la bază. Cum schimbi baza unui logaritm? Sper să vă amintiți această formulă:

Abia acum vom scrie în schimb:

Numitorul este pur și simplu o constantă (un număr constant, fără o variabilă). Derivata se obține foarte simplu:

Derivate ale exponenţialului şi funcții logaritmice aproape niciodată nu apar la examenul de stat unificat, dar nu ar strica să le cunoaștem.

Derivată a unei funcții complexe.

Ce este o „funcție complexă”? Nu, acesta nu este un logaritm și nu o arctangentă. Aceste funcții pot fi greu de înțeles (deși dacă ți se pare dificil logaritmul, citește subiectul „Logaritmi” și vei fi bine), dar din punct de vedere matematic, cuvântul „complex” nu înseamnă „dificil”.

Imaginați-vă o bandă rulantă mică: două persoane stau și fac niște acțiuni cu unele obiecte. De exemplu, primul învelește un baton de ciocolată într-un ambalaj, iar al doilea îl leagă cu o panglică. Rezultatul este un obiect compozit: un baton de ciocolată înfășurat și legat cu o panglică. Pentru a mânca un baton de ciocolată, trebuie să faceți pașii inversi în ordine inversă.

Să creăm o conductă matematică similară: mai întâi vom găsi cosinusul unui număr, apoi vom pătrat numărul rezultat. Așadar, ni se dă un număr (ciocolată), îi găsesc cosinus (înveliș), iar apoi pătrați ceea ce am primit (legați-l cu o panglică). Ce s-a întâmplat? Funcţie. Acesta este un exemplu functie complexa: când, pentru a-i găsi valoarea, executăm prima acțiune direct cu variabila, iar apoi o a doua acțiune cu ceea ce a rezultat din prima.

Cu alte cuvinte, o funcție complexă este o funcție al cărei argument este o altă funcție: .

Pentru exemplul nostru, .

Putem face cu ușurință aceiași pași în ordine inversă: mai întâi îl pătrați, iar apoi caut cosinusul numărului rezultat: . Este ușor de ghicit că rezultatul va fi aproape întotdeauna diferit. O caracteristică importantă a funcțiilor complexe: atunci când ordinea acțiunilor se schimbă, funcția se schimbă.

Al doilea exemplu: (același lucru). .

Acțiunea pe care o facem ultima va fi numită funcția „externă”., iar acțiunea efectuată prima - în consecință funcția „internă”.(acestea sunt nume informale, le folosesc doar pentru a explica materialul într-un limbaj simplu).

Încercați să determinați singur ce funcție este externă și care este internă:

Raspunsuri: Separarea funcțiilor interioare și exterioare este foarte asemănătoare cu schimbarea variabilelor: de exemplu, într-o funcție

  1. Ce acțiune vom efectua mai întâi? Mai întâi, să calculăm sinusul și abia apoi să-l cubăm. Mijloace, funcție internă, dar extern.
    Iar funcția inițială este compoziția lor: .
  2. Intern: ; extern: .
    Examinare: .
  3. Intern: ; extern: .
    Examinare: .
  4. Intern: ; extern: .
    Examinare: .
  5. Intern: ; extern: .
    Examinare: .

Schimbăm variabilele și obținem o funcție.

Ei bine, acum ne vom extrage batonul de ciocolată și vom căuta derivatul. Procedura este întotdeauna inversată: mai întâi căutăm derivata funcției exterioare, apoi înmulțim rezultatul cu derivata funcției interioare. În raport cu exemplul original, arată astfel:

Alt exemplu:

Deci, să formulăm în sfârșit regula oficială:

Algoritm pentru găsirea derivatei unei funcții complexe:

Pare simplu, nu?

Să verificăm cu exemple:

Solutii:

1) Intern: ;

Extern: ;

2) Intern: ;

(Nu încercați să o tăiați până acum! Nu iese nimic de sub cosinus, vă amintiți?)

3) Intern: ;

Extern: ;

Este imediat clar că aceasta este o funcție complexă pe trei niveluri: la urma urmei, aceasta este deja o funcție complexă în sine și extragem și rădăcina din ea, adică efectuăm a treia acțiune (punem ciocolata într-un ambalaj iar cu o panglică în servietă). Dar nu există niciun motiv să ne fie frică: vom „despacheta” această funcție în aceeași ordine ca de obicei: de la sfârșit.

Adică mai întâi diferențiem rădăcina, apoi cosinusul și abia apoi expresia dintre paranteze. Și apoi înmulțim totul.

În astfel de cazuri, este convenabil să numerotați acțiunile. Adică să ne imaginăm ce știm. În ce ordine vom efectua acțiuni pentru a calcula valoarea acestei expresii? Să ne uităm la un exemplu:

Cu cât acțiunea este efectuată mai târziu, cu atât funcția corespunzătoare va fi mai „externă”. Secvența acțiunilor este aceeași ca înainte:

Aici cuibărirea este în general pe 4 niveluri. Să stabilim cursul acțiunii.

1. Exprimarea radicală. .

2. Rădăcină. .

3. Sine. .

4. Pătrat. .

5. Punând totul împreună:

DERIVAT. SCURT DESPRE LUCRURILE PRINCIPALE

Derivată a unei funcții- raportul dintre incrementul funcției și incrementul argumentului pentru o creștere infinitezimală a argumentului:

Derivate de bază:

Reguli de diferentiere:

Constanta este scoasă din semnul derivat:

Derivată a sumei:

Derivat al produsului:

Derivată a coeficientului:

Derivata unei functii complexe:

Algoritm pentru găsirea derivatei unei funcții complexe:

  1. Definim funcția „internă” și găsim derivata ei.
  2. Definim funcția „externă” și găsim derivata ei.
  3. Înmulțim rezultatele primului și celui de-al doilea punct.

De când ați venit aici, probabil că ați văzut deja această formulă în manual

si fa o fata ca asta:

Prietene, nu-ți face griji! De fapt, totul este pur și simplu scandalos. Cu siguranță vei înțelege totul. O singură cerere - citiți articolul încet, încearcă să înțelegi fiecare pas. Am scris cât se poate de simplu și clar, dar tot trebuie să înțelegeți ideea. Și asigurați-vă că rezolvați sarcinile din articol.

Ce este o funcție complexă?

Imaginați-vă că vă mutați într-un alt apartament și, prin urmare, împachetați lucrurile în cutii mari. Să presupunem că trebuie să colectați câteva obiecte mici, de exemplu, materiale de scris la școală. Dacă doar le arunci într-o cutie imensă, se vor pierde printre altele. Pentru a evita acest lucru, le pui mai întâi, de exemplu, într-o pungă, pe care apoi o pui într-o cutie mare, după care o sigilezi. Acest proces „complex” este prezentat în diagrama de mai jos:

S-ar părea, ce legătură are matematica cu asta? Da, în ciuda faptului că o funcție complexă se formează EXACT ÎN ACELAȘI mod! Numai că „împachetăm” nu caiete și pixuri, ci \(x\), în timp ce „pachetele” și „cutiile” sunt diferite.

De exemplu, să luăm x și să-l „împachetăm” într-o funcție:


Ca rezultat, obținem, desigur, \(\cos⁡x\). Acesta este „sacul nostru de lucruri”. Acum să-l punem într-o „cutie” - împachetați-l, de exemplu, într-o funcție cubică.


Ce se va întâmpla până la urmă? Da, așa este, va exista o „pungă de lucruri într-o cutie”, adică „cosinus cu X cub”.

Designul rezultat este o funcție complexă. Diferă de unul simplu prin aceea că Mai multe „influențe” (pachete) sunt aplicate unui X la rândși se dovedește ca și cum „funcție din funcție” - „ambalare în ambalaj”.

ÎN curs şcolar Există foarte puține tipuri de aceste „pachete”, doar patru:

Acum să „împachetăm” X mai întâi functie exponentiala cu baza 7 și apoi într-o funcție trigonometrică. Primim:

\(x → 7^x → tg⁡(7^x)\)

Acum să „împachetăm” X de două ori funcții trigonometrice, mai întâi în , și apoi în:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

Simplu, nu?

Acum scrieți singur funcțiile, unde x:
- mai întâi este „împachetat” într-un cosinus, apoi într-o funcție exponențială cu baza \(3\);
- mai întâi la puterea a cincea, iar apoi la tangentă;
- primul la logaritmul la baza \(4\) , apoi la puterea \(-2\).

Găsiți răspunsurile la această sarcină la sfârșitul articolului.

Putem „împacheta” X nu de două, ci de trei ori? Nici o problemă! Și de patru, și cinci și de douăzeci și cinci de ori. Iată, de exemplu, o funcție în care x este „ambalat” \(4\) ori:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

Dar astfel de formule nu se vor găsi în practica școlară (elevii sunt mai norocoși - ale lor pot fi mai complicate☺).

„Despachetarea” unei funcții complexe

Priviți din nou funcția anterioară. Vă puteți da seama de secvența de „împachetare”? În ce a fost îndesat X mai întâi, în ce apoi și așa mai departe până la sfârșit. Adică, ce funcție este imbricată în care? Ia o bucată de hârtie și notează ce crezi. Puteți face acest lucru cu un lanț cu săgeți așa cum am scris mai sus sau în orice alt mod.

Acum, răspunsul corect este: mai întâi, x a fost „împachetat” în puterea \(4\)-a, apoi rezultatul a fost împachetat într-un sinus, acesta, la rândul său, a fost plasat în logaritmul la baza \(2\) , iar în cele din urmă toată această construcție a fost îndesată într-o putere de cinci.

Adică, trebuie să derulați secvența ÎN ORDINE INVERSĂ. Și iată un indiciu despre cum să o faci mai ușor: uită-te imediat la X - ar trebui să dansezi din el. Să ne uităm la câteva exemple.

De exemplu, iată următoarea funcție: \(y=tg⁡(\log_2⁡x)\). Ne uităm la X - ce se întâmplă mai întâi cu el? Luat de la el. Și apoi? Se ia tangenta rezultatului. Secvența va fi aceeași:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Un alt exemplu: \(y=\cos⁡((x^3))\). Să analizăm - mai întâi am tăiat X cub, apoi am luat cosinusul rezultatului. Aceasta înseamnă că șirul va fi: \(x → x^3 → \cos⁡((x^3))\). Atentie, functia pare a fi asemanatoare cu prima (unde are poze). Dar aceasta este o funcție complet diferită: aici în cub este x (adică \(\cos⁡((x·x·x)))\), iar acolo în cub este cosinusul \(x\) ( adică \(\cos⁡ x·\cos⁡x·\cos⁡x\)). Această diferență apare din diferite secvențe de „ambalare”.

Ultimul exemplu (cu Informații importanteîn ea): \(y=\sin⁡((2x+5))\). Este clar că aici au făcut mai întâi operații aritmetice cu x, apoi au luat sinusul rezultatului: \(x → 2x+5 → \sin⁡((2x+5))\). Și acesta este un punct important: în ciuda faptului că operațiile aritmetice nu sunt funcții în sine, aici acționează și ca o modalitate de „împachetare”. Să ne adâncim puțin în această subtilitate.

După cum am spus mai sus, în funcțiile simple x este „împachetat” o dată, iar în funcțiile complexe - două sau mai multe. Mai mult, orice combinație de funcții simple (adică suma, diferența, înmulțirea sau împărțirea lor) este și o funcție simplă. De exemplu, \(x^7\) este o funcție simplă și la fel este \(ctg x\). Aceasta înseamnă că toate combinațiile lor sunt funcții simple:

\(x^7+ ctg x\) - simplu,
\(x^7· cot x\) – simplu,
\(\frac(x^7)(ctg x)\) – simplu etc.

Cu toate acestea, dacă se aplică încă o funcție unei astfel de combinații, aceasta va deveni o funcție complexă, deoarece vor exista două „pachete”. Vezi diagrama:



Bine, dă-i drumul acum. Scrieți secvența funcțiilor de „împachetare”:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Răspunsurile sunt din nou la sfârșitul articolului.

Funcții interne și externe

De ce trebuie să înțelegem imbricarea funcțiilor? Ce ne oferă asta? Faptul este că fără o astfel de analiză nu vom putea găsi în mod fiabil derivate ale funcțiilor discutate mai sus.

Și pentru a merge mai departe, vom avea nevoie de încă două concepte: funcții interne și externe. Acesta este un lucru foarte simplu, în plus, de fapt, le-am analizat deja mai sus: dacă ne amintim analogia de la început, atunci funcția internă este un „pachet”, iar funcția externă este o „cutie”. Acestea. ceea ce este „învelit” X este o funcție internă, iar ceea ce este „învelit” funcția internă este deja extern. Ei bine, este clar de ce - ea este afară, asta înseamnă exterior.

În acest exemplu: \(y=tg⁡(log_2⁡x)\), funcția \(\log_2⁡x\) este internă și
- extern.

Și în aceasta: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) este intern și
- extern.

Finalizați ultima practică de analiză a funcțiilor complexe și, în sfârșit, să trecem la ceea ce am început cu toții - vom găsi derivate ale funcțiilor complexe:

Completați spațiile libere din tabel:


Derivată a unei funcții complexe

Bravo nouă, am ajuns în sfârșit la „șeful” acestui subiect - de fapt, derivatul unei funcții complexe, și mai precis, la acea formulă foarte groaznică de la începutul articolului.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Această formulă se citește astfel:

Derivata unei functii complexe este egala cu produsul derivatei functiei externe fata de o functie interna constanta si derivata functiei interne.

Și uită-te imediat la diagrama de analiză „cuvânt cu cuvânt” pentru a înțelege ce este:

Sper că termenii „derivat” și „produs” nu provoacă dificultăți. „Funcție complexă” - am rezolvat-o deja. Captura este în „derivatul unei funcții externe în raport cu o funcție internă constantă”. Ce este?

Răspuns: Aceasta este derivata obișnuită a unei funcții externe, în care doar funcția externă se modifică, iar cea internă rămâne aceeași. Încă nu este clar? Bine, hai să folosim un exemplu.

Să avem o funcție \(y=\sin⁡(x^3)\). Este clar că funcția internă aici este \(x^3\), iar cea externă
. Să găsim acum derivata exteriorului în raport cu interiorul constant.

Decide sarcini fizice sau exemple în matematică este complet imposibil fără cunoașterea derivatei și a metodelor de calcul al acesteia. Derivatul este unul dintre cele mai importante concepte analiză matematică. Am decis să dedicăm articolul de astăzi acestui subiect fundamental. Ce este un derivat, ce este fizic și sens geometric Cum se calculează derivata unei funcții? Toate aceste întrebări pot fi combinate într-una singură: cum să înțelegeți derivatul?

Sensul geometric și fizic al derivatului

Să existe o funcție f(x) , specificat într-un anumit interval (a, b) . Punctele x și x0 aparțin acestui interval. Când x se schimbă, funcția în sine se schimbă. Schimbarea argumentului - diferența de valori x-x0 . Această diferență este scrisă ca delta x și se numește increment de argument. O modificare sau o creștere a unei funcții este diferența dintre valorile unei funcții în două puncte. Definiția derivatului:

Derivata unei funcții într-un punct este limita raportului dintre incrementul funcției la un punct dat și incrementul argumentului atunci când acesta din urmă tinde spre zero.

Altfel se poate scrie asa:

Ce rost are să găsești o astfel de limită? Și iată ce este:

derivata unei funcții într-un punct este egală cu tangentei unghiului dintre axa OX și tangentei la graficul funcției într-un punct dat.


Sensul fizic al derivatului: derivata traseului în raport cu timpul este egală cu viteza mișcării rectilinie.

Într-adevăr, încă din timpul școlii, toată lumea știe că viteza este o cale anume x=f(t) si timpul t . viteza medie pentru o anumită perioadă de timp:

Pentru a afla viteza de mișcare la un moment dat t0 trebuie să calculați limita:

Prima regulă: setați o constantă

Constanta poate fi scoasă din semnul derivatului. Mai mult, acest lucru trebuie făcut. Când rezolvați exemple la matematică, luați-o ca regulă - Dacă puteți simplifica o expresie, asigurați-vă că o simplificați .

Exemplu. Să calculăm derivata:

Regula a doua: derivata sumei functiilor

Derivata sumei a doua functii este egala cu suma derivatelor acestor functii. Același lucru este valabil și pentru derivata diferenței de funcții.

Nu vom da o demonstrație a acestei teoreme, ci mai degrabă vom lua în considerare un exemplu practic.

Aflați derivata funcției:

Regula trei: derivata produsului de funcții

Derivata produsului a doua functii diferentiabile se calculeaza prin formula:

Exemplu: găsiți derivata unei funcții:

Soluţie:

Este important să vorbim aici despre calcularea derivatelor funcțiilor complexe. Derivata unei functii complexe este egala cu produsul derivatei acestei functii fata de argumentul intermediar si derivata argumentului intermediar fata de variabila independenta.

În exemplul de mai sus întâlnim expresia:

În acest caz, argumentul intermediar este de 8x față de a cincea putere. Pentru a calcula derivata unei astfel de expresii, mai întâi calculăm derivata funcției externe în raport cu argumentul intermediar, apoi o înmulțim cu derivata argumentului intermediar însuși față de variabila independentă.

Regula a patra: derivată a câtului a două funcții

Formula pentru determinarea derivatei coeficientului a două funcții:

Am încercat să vorbim despre derivate pentru manechine de la zero. Acest subiect nu este atât de simplu pe cât pare, așa că fiți atenți: există adesea capcane în exemple, așa că aveți grijă când calculați derivatele.

Cu orice întrebări pe acest subiect și pe alte subiecte, puteți contacta serviciul studenți. In spate Pe termen scurt Vă vom ajuta să rezolvați cele mai dificile teste și să rezolvați probleme, chiar dacă nu ați mai făcut niciodată calcule derivate.

Dacă urmați definiția, atunci derivata unei funcții într-un punct este limita raportului de creștere a funcției Δ y la argumentul increment Δ X:

Totul pare a fi clar. Dar încercați să utilizați această formulă pentru a calcula, să zicem, derivata funcției f(X) = X 2 + (2X+ 3) · e X păcat X. Dacă faci totul prin definiție, atunci după câteva pagini de calcule vei adormi pur și simplu. Prin urmare, există modalități mai simple și mai eficiente.

Pentru început, observăm că din întreaga varietate de funcții putem distinge așa-numitele funcții elementare. Acestea sunt expresii relativ simple, ale căror derivate au fost mult timp calculate și tabulate. Astfel de funcții sunt destul de ușor de reținut - împreună cu derivatele lor.

Derivate ale funcţiilor elementare

Funcțiile elementare sunt toate cele enumerate mai jos. Derivatele acestor funcții trebuie cunoscute pe de rost. În plus, nu este deloc dificil să le memorezi - de aceea sunt elementare.

Deci, derivate functii elementare:

Nume Funcţie Derivat
Constant f(X) = C, CR 0 (da, zero!)
Putere cu exponent rațional f(X) = X n n · X n − 1
Sinusul f(X) = păcat X cos X
Cosinus f(X) = cos X −păcat X(minus sinus)
Tangentă f(X) = tg X 1/cos 2 X
Cotangentă f(X) = ctg X − 1/sin 2 X
Logaritmul natural f(X) = jurnal X 1/X
Logaritmul arbitrar f(X) = jurnal A X 1/(X ln A)
Functie exponentiala f(X) = e X e X(Nimic nu s-a schimbat)

Dacă o funcție elementară este înmulțită cu o constantă arbitrară, atunci derivata noii funcție este de asemenea ușor de calculată:

(C · f)’ = C · f ’.

În general, constantele pot fi scoase din semnul derivatei. De exemplu:

(2X 3)’ = 2 · ( X 3)’ = 2 3 X 2 = 6X 2 .

Evident, funcțiile elementare pot fi adăugate între ele, multiplicate, împărțite - și multe altele. Așa vor apărea funcții noi, nu mai ales elementare, dar și diferențiate după anumite reguli. Aceste reguli sunt discutate mai jos.

Derivată a sumei și diferenței

Să fie date funcțiile f(X) Și g(X), ale căror derivate ne sunt cunoscute. De exemplu, puteți lua funcțiile elementare discutate mai sus. Apoi puteți găsi derivata sumei și diferenței acestor funcții:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Deci, derivata sumei (diferența) a două funcții este egală cu suma (diferența) derivatelor. Pot exista mai mulți termeni. De exemplu, ( f + g + h)’ = f ’ + g ’ + h ’.

Strict vorbind, nu există un concept de „scădere” în algebră. Există un concept de „element negativ”. Prin urmare diferența fg poate fi rescris ca o sumă f+ (−1) g, iar apoi rămâne o singură formulă - derivata sumei.

f(X) = X 2 + sin x; g(X) = X 4 + 2X 2 − 3.

Funcţie f(X) este suma a două funcții elementare, prin urmare:

f ’(X) = (X 2 + păcat X)’ = (X 2)’ + (păcat X)’ = 2X+ cos x;

Raționăm în mod similar pentru funcție g(X). Numai că există deja trei termeni (din punct de vedere al algebrei):

g ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Răspuns:
f ’(X) = 2X+ cos x;
g ’(X) = 4X · ( X 2 + 1).

Derivat al produsului

Matematica este o știință logică, așa că mulți oameni cred că, dacă derivata unei sume este egală cu suma derivatelor, atunci derivata produsului grevă„>egal cu produsul derivatelor. Dar stricați-vă! Derivata unui produs se calculează folosind o formulă complet diferită. Și anume:

(f · g) ’ = f ’ · g + f · g

Formula este simplă, dar este adesea uitată. Și nu numai școlari, ci și elevi. Rezultatul este probleme rezolvate incorect.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = X 3 cos x; g(X) = (X 2 + 7X− 7) · e X .

Funcţie f(X) este produsul a două funcții elementare, deci totul este simplu:

f ’(X) = (X 3 cos X)’ = (X 3)’ cos X + X 3 (cos X)’ = 3X 2 cos X + X 3 (− păcat X) = X 2 (3cos XX păcat X)

Funcţie g(X) primul factor este puțin mai complicat, dar schema generala asta nu se schimba. Evident, primul factor al funcției g(X) este un polinom și derivata sa este derivata sumei. Avem:

g ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)’ · e X + (X 2 + 7X− 7) · ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X· (2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Răspuns:
f ’(X) = X 2 (3cos XX păcat X);
g ’(X) = X(X+ 9) · e X .

Vă rugăm să rețineți că în ultimul pas derivata este factorizată. În mod formal, acest lucru nu trebuie făcut, dar majoritatea derivatelor nu sunt calculate singure, ci pentru a examina funcția. Aceasta înseamnă că în continuare derivata va fi egalată cu zero, semnele sale vor fi determinate și așa mai departe. Pentru un astfel de caz, este mai bine să aveți o expresie factorizată.

Dacă există două funcții f(X) Și g(X), și g(X) ≠ 0 pe mulțimea care ne interesează, putem defini o nouă funcție h(X) = f(X)/g(X). Pentru o astfel de funcție puteți găsi și derivata:

Nu slab, nu? De unde a venit minusul? De ce g 2? Și așa! Aceasta este una dintre cele mai complexe formule - nu vă puteți da seama fără o sticlă. Prin urmare, este mai bine să-l studiați la exemple concrete.

Sarcină. Găsiți derivate ale funcțiilor:

Numătorul și numitorul fiecărei fracții conțin funcții elementare, deci tot ce ne trebuie este formula pentru derivata coeficientului:


Conform tradiției, să factorizăm numărătorul - acest lucru va simplifica foarte mult răspunsul:

O funcție complexă nu este neapărat o formulă lungă de jumătate de kilometru. De exemplu, este suficient să luați funcția f(X) = păcat Xși înlocuiți variabila X, să zicem, pe X 2 + ln X. Se va rezolva f(X) = păcat ( X 2 + ln X) - aceasta este o funcție complexă. Are și un derivat, dar nu va fi posibil să îl găsiți folosind regulile discutate mai sus.

Ce ar trebuii să fac? În astfel de cazuri, înlocuirea unei variabile și a unei formule pentru derivata unei funcții complexe ajută:

f ’(X) = f ’(t) · t', Dacă X este înlocuit cu t(X).

De regulă, situația cu înțelegerea acestei formule este și mai tristă decât cu derivata coeficientului. Prin urmare, este mai bine să-l explicați folosind exemple specifice, cu o descriere detaliată a fiecărui pas.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = e 2X + 3 ; g(X) = păcat ( X 2 + ln X)

Rețineți că dacă în funcție f(X) în loc de expresia 2 X+ 3 va fi ușor X, atunci obținem o funcție elementară f(X) = e X. Prin urmare, facem o înlocuire: fie 2 X + 3 = t, f(X) = f(t) = e t. Căutăm derivata unei funcții complexe folosind formula:

f ’(X) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Și acum - atenție! Efectuăm înlocuirea inversă: t = 2X+ 3. Obținem:

f ’(X) = e t · t ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Acum să ne uităm la funcție g(X). Evident că trebuie înlocuit X 2 + ln X = t. Avem:

g ’(X) = g ’(t) · t’ = (păcat t)’ · t’ = cos t · t

Înlocuire inversă: t = X 2 + ln X. Apoi:

g ’(X) = cos ( X 2 + ln X) · ( X 2 + ln X)’ = cos ( X 2 + ln X) · (2 X + 1/X).

Asta e tot! După cum se poate vedea din ultima expresie, întreaga problemă a fost redusă la calcularea sumei derivate.

Răspuns:
f ’(X) = 2 · e 2X + 3 ;
g ’(X) = (2X + 1/X) cos ( X 2 + ln X).

Foarte des în lecțiile mele, în loc de termenul „derivat”, folosesc cuvântul „prim”. De exemplu, un prim din suma egal cu suma lovituri. Este mai clar? Asta e bine.

Astfel, calcularea derivatei se reduce la a scăpa de aceleași lovituri conform regulilor discutate mai sus. Ca exemplu final, să revenim la puterea derivată cu un exponent rațional:

(X n)’ = n · X n − 1

Puțini oameni știu asta în rol n poate fi un număr fracționar. De exemplu, rădăcina este X 0,5. Ce se întâmplă dacă există ceva fantezist sub rădăcină? Din nou, rezultatul va fi o funcție complexă - le place să dea astfel de construcții teste ah si examene.

Sarcină. Aflați derivata funcției:

Mai întâi, să rescriem rădăcina ca o putere cu un exponent rațional:

f(X) = (X 2 + 8X − 7) 0,5 .

Acum facem un înlocuitor: let X 2 + 8X − 7 = t. Găsim derivata folosind formula:

f ’(X) = f ’(t) · t ’ = (t 0,5)’ · t’ = 0,5 · t−0,5 · t ’.

Să facem înlocuirea inversă: t = X 2 + 8X− 7. Avem:

f ’(X) = 0,5 · ( X 2 + 8X− 7) −0,5 · ( X 2 + 8X− 7)’ = 0,5 · (2 X+ 8) ( X 2 + 8X − 7) −0,5 .

În sfârșit, înapoi la rădăcini:

Derivate complexe. Derivată logaritmică.
Derivată a unei funcții putere-exponențială

Continuăm să ne îmbunătățim tehnica de diferențiere. În această lecție, vom consolida materialul pe care l-am abordat, vom analiza derivate mai complexe și, de asemenea, ne vom familiariza cu noi tehnici și trucuri pentru găsirea unei derivate, în special, cu derivata logaritmică.

Acelor cititori care au nivel scăzut pregătire, ar trebui să consultați articolul Cum să găsesc derivatul? Exemple de soluții, care vă va permite să vă ridicați abilitățile aproape de la zero. În continuare, trebuie să studiați cu atenție pagina Derivată a unei funcții complexe, înțelegeți și rezolvați Toate exemplele pe care le-am dat. Această lecție este în mod logic a treia la rând, iar după ce o stăpânești vei diferenția cu încredere funcții destul de complexe. Nu este de dorit să luăm poziția „Unde altundeva? Este suficient!”, deoarece toate exemplele și soluțiile sunt preluate din teste reale și sunt adesea întâlnite în practică.

Să începem cu repetarea. La lectie Derivată a unei funcții complexe Am analizat o serie de exemple cu comentarii detaliate. În cursul studierii calculului diferențial și a altor ramuri ale analizei matematice, va trebui să diferențiezi foarte des și nu este întotdeauna convenabil (și nu întotdeauna necesar) să descrii exemple în detaliu. Prin urmare, vom exersa găsirea derivatelor pe cale orală. Cei mai potriviți „candidați” pentru aceasta sunt derivate ale celei mai simple funcții complexe, de exemplu:

Conform regulii de diferenţiere a funcţiilor complexe :

Când studiați alte subiecte matan în viitor, cel mai adesea nu este necesară o înregistrare atât de detaliată; se presupune că studentul știe să găsească astfel de derivate pe pilotul automat. Să ne imaginăm că la ora 3 dimineața a sunat telefonul și o voce plăcută a întrebat: „Care este derivata tangentei a doi X?” Aceasta ar trebui să fie urmată de un răspuns aproape instantaneu și politicos: .

Primul exemplu va fi destinat imediat decizie independentă.

Exemplul 1

Găsiți oral următoarele derivate, într-o singură acțiune, de exemplu: . Pentru a finaliza sarcina trebuie doar să utilizați tabel de derivate ale funcțiilor elementare(dacă nu ți-ai amintit încă). Dacă aveți dificultăți, vă recomand să recitiți lecția Derivată a unei funcții complexe.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Răspunsuri la sfârșitul lecției

Derivate complexe

După pregătirea preliminară a artileriei, exemplele cu 3-4-5 cuibări de funcții vor fi mai puțin înfricoșătoare. Următoarele două exemple pot părea complicate pentru unii, dar dacă le înțelegeți (cineva va avea de suferit), atunci aproape orice altceva din calculul diferențial va părea o glumă de copil.

Exemplul 2

Aflați derivata unei funcții

După cum sa menționat deja, atunci când găsiți derivata unei funcții complexe, în primul rând, este necesar DreaptaÎNȚELEGEȚI investițiile dvs. În cazurile în care există îndoieli, vă reamintesc o tehnică utilă: luăm valoarea experimentală a lui „x”, de exemplu, și încercăm (mental sau în schiță) să înlocuim valoare datăîntr-o „expresie groaznică”.

1) Mai întâi trebuie să calculăm expresia, ceea ce înseamnă că suma este cea mai adâncă încorporare.

2) Apoi trebuie să calculați logaritmul:

4) Apoi cubează cosinusul:

5) La al cincilea pas diferența:

6) Și în sfârșit, funcția cea mai exterioară este rădăcina pătrată:

Formula pentru diferențierea unei funcții complexe sunt aplicate în ordine inversă, de la funcția cea mai exterioară la cea mai interioară. Noi decidem:

Se pare că nu există erori...

(1) Luați derivata rădăcinii pătrate.

(2) Luăm derivata diferenței folosind regula

(3) Derivata unui triplu este zero. În al doilea termen luăm derivata gradului (cubul).

(4) Luați derivata cosinusului.

(5) Luați derivata logaritmului.

(6) Și, în sfârșit, luăm derivata celei mai profunde încorporare.

Poate părea prea dificil, dar acesta nu este cel mai brutal exemplu. Luați, de exemplu, colecția lui Kuznetsov și veți aprecia toată frumusețea și simplitatea derivatului analizat. Am observat că le place să dea un lucru similar la un examen pentru a verifica dacă un student înțelege cum să găsească derivata unei funcții complexe sau nu înțelege.

Următorul exemplu este pe care îl puteți rezolva singur.

Exemplul 3

Aflați derivata unei funcții

Sugestie: Mai întâi aplicăm regulile de liniaritate și regula de diferențiere a produsului

Soluție completă și răspuns la sfârșitul lecției.

Este timpul să trecem la ceva mai mic și mai frumos.
Nu este neobișnuit ca un exemplu să arate produsul nu a două, ci a trei funcții. Cum să găsiți derivata produsului a trei factori?

Exemplul 4

Aflați derivata unei funcții

Mai întâi ne uităm, este posibil să transformăm produsul a trei funcții în produsul a două funcții? De exemplu, dacă am avea două polinoame în produs, atunci am putea deschide parantezele. Dar în exemplul luat în considerare, toate funcțiile sunt diferite: grad, exponent și logaritm.

În astfel de cazuri este necesar secvenţial aplica regula de diferentiere a produselor de două ori

Trucul este că prin „y” notăm produsul a două funcții: , iar cu „ve” notăm logaritmul: . De ce se poate face asta? Este într-adevăr – acesta nu este un produs al doi factori și regula nu funcționează?! Nu este nimic complicat:

Acum rămâne să aplici regula a doua oară la paranteză:

De asemenea, puteți să vă răsuciți și să puneți ceva din paranteze, dar în acest caz este mai bine să lăsați răspunsul exact în această formă - va fi mai ușor de verificat.

Exemplul luat în considerare poate fi rezolvat în al doilea mod:

Ambele soluții sunt absolut echivalente.

Exemplul 5

Aflați derivata unei funcții

Acesta este un exemplu pentru o soluție independentă; în probă se rezolvă folosind prima metodă.

Să ne uităm la exemple similare cu fracții.

Exemplul 6

Aflați derivata unei funcții

Există mai multe moduri prin care puteți merge aici:

Sau cam asa:

Dar soluția se va scrie mai compact dacă folosim mai întâi regula de diferențiere a coeficientului , luând pentru întregul numărător:

În principiu, exemplul este rezolvat, iar dacă este lăsat așa cum este, nu va fi o eroare. Dar dacă aveți timp, este întotdeauna indicat să verificați o ciornă pentru a vedea dacă răspunsul poate fi simplificat? Să reducem expresia numărătorului la numitor comunȘi să scăpăm de fracția cu trei etaje:

Dezavantajul simplificărilor suplimentare este că există riscul de a greși nu la găsirea derivatei, ci în timpul transformărilor școlare banale. Pe de altă parte, profesorii resping adesea sarcina și cer să „aducă în minte” derivatul.

Un exemplu mai simplu de rezolvat singur:

Exemplul 7

Aflați derivata unei funcții

Continuăm să stăpânim metodele de găsire a derivatei și acum vom lua în considerare un caz tipic când logaritmul „teribil” este propus pentru diferențiere

Exemplul 8

Aflați derivata unei funcții

Aici puteți merge pe calea lungă, folosind regula pentru diferențierea unei funcții complexe:

Dar chiar primul pas te cufundă imediat în deznădejde - trebuie să iei derivatul neplăcut dintr-o putere fracțională și apoi și dintr-o fracțiune.

De aceea inainte de cum să luăm derivata unui logaritm „sofisticat”, aceasta este mai întâi simplificată folosind proprietățile școlii bine-cunoscute:



! Dacă aveți la îndemână un caiet de practică, copiați aceste formule direct acolo. Dacă nu aveți un caiet, copiați-le pe o coală de hârtie, deoarece exemplele rămase ale lecției se vor învârti în jurul acestor formule.

Soluția în sine poate fi scrisă cam așa:

Să transformăm funcția:

Găsirea derivatei:

Preconversia funcției în sine a simplificat foarte mult soluția. Astfel, atunci când se propune un logaritm similar pentru diferențiere, este întotdeauna recomandabil să-l „defalci”.

Și acum câteva exemple simple pe care să le rezolvați singur:

Exemplul 9

Aflați derivata unei funcții

Exemplul 10

Aflați derivata unei funcții

Toate transformările și răspunsurile sunt la sfârșitul lecției.

Derivată logaritmică

Dacă derivatul logaritmilor este o muzică atât de dulce, atunci se pune întrebarea: este posibil în unele cazuri să se organizeze logaritmul în mod artificial? Poate sa! Și chiar necesar.

Exemplul 11

Aflați derivata unei funcții

Am analizat recent exemple similare. Ce să fac? Puteți aplica succesiv regula de diferențiere a coeficientului și apoi regula de diferențiere a produsului. Dezavantajul acestei metode este că ajungeți cu o fracție uriașă de trei etaje, cu care nu doriți să vă ocupați deloc.

Dar în teorie și practică există un lucru atât de minunat ca derivata logaritmică. Logaritmii pot fi organizați artificial prin „atârnând” pe ambele părți:

Notă : deoarece funcția poate accepta valori negative, atunci, în general, trebuie să utilizați module: , care va dispărea ca urmare a diferențierii. Cu toate acestea, designul actual este de asemenea acceptabil, unde implicit este luat în considerare complex sensuri. Dar dacă cu toată rigoarea, atunci în ambele cazuri ar trebui făcută o rezervă că.

Acum trebuie să „dezintegrați” cât mai mult posibil logaritmul din partea dreaptă (formule în fața ochilor voștri?). Voi descrie acest proces în detaliu:

Să începem cu diferențierea.
Încheiem ambele părți sub primul:

Derivatul din partea dreaptă este destul de simplu; nu îl voi comenta, pentru că dacă citiți acest text, ar trebui să îl puteți gestiona cu încredere.

Dar partea stângă?

Pe partea stângă avem functie complexa. Prevăd întrebarea: „De ce, există o literă „Y” sub logaritm?”

Faptul este că acest „joc cu o literă” - ESTE ÎNȘI O FUNCȚIE(dacă nu este foarte clar, consultați articolul Derivată a unei funcții specificată implicit). Prin urmare, logaritmul este o funcție externă, iar „y” este o funcție internă. Și folosim regula pentru diferențierea unei funcții complexe :

În partea stângă, ca prin farmec, avem un derivat. Apoi, conform regulii proporției, transferăm „y” de la numitorul părții stângi în partea de sus a părții drepte:

Și acum să ne amintim despre ce fel de funcție „jucător” am vorbit în timpul diferențierii? Să ne uităm la starea:

Răspuns final:

Exemplul 12

Aflați derivata unei funcții

Acesta este un exemplu de rezolvat singur. Un exemplu de proiect al unui exemplu de acest tip se află la sfârșitul lecției.

Folosind derivata logaritmică a fost posibil să se rezolve oricare dintre exemplele nr. 4-7, un alt lucru este că funcțiile de acolo sunt mai simple și, poate, utilizarea derivatei logaritmice nu este foarte justificată.

Derivată a unei funcții putere-exponențială

Nu am luat în considerare această funcție încă. O funcție exponențială putere este o funcție pentru care atât gradul cât și baza depind de „x”. Un exemplu clasic care vă va fi dat în orice manual sau prelegere:

Cum se găsește derivata unei funcții exponențiale putere?

Este necesar să se folosească tehnica tocmai discutată - derivata logaritmică. Agățăm logaritmi pe ambele părți:

De regulă, în partea dreaptă, gradul este scos de sub logaritm:

Ca urmare, în partea dreaptă avem produsul a două funcții, care vor fi diferențiate conform formulei standard .

Găsim derivata; pentru a face acest lucru, închidem ambele părți sub linii:

Alte acțiuni sunt simple:

In cele din urma:

Dacă orice conversie nu este complet clară, vă rugăm să recitiți cu atenție explicațiile din Exemplul nr. 11.

ÎN sarcini practice Funcția putere-exponențială va fi întotdeauna mai complexă decât exemplul discutat în prelegere.

Exemplul 13

Aflați derivata unei funcții

Folosim derivata logaritmică.

În partea dreaptă avem o constantă și produsul a doi factori - „x” și „logaritmul logaritmului x” (un alt logaritm este imbricat sub logaritm). Când diferențiem, așa cum ne amintim, este mai bine să mutați imediat constanta din semnul derivat, astfel încât să nu împiedice; și, bineînțeles, aplicăm regula familiară :