Acest material este dedicat unui astfel de concept precum unghiul dintre două linii care se intersectează. În primul paragraf vom explica ce este și o vom arăta în ilustrații. Apoi ne vom uita la modul în care puteți găsi sinusul, cosinusul acestui unghi și unghiul în sine (vom lua în considerare separat cazurile cu un plan și spațiu tridimensional), vom da formulele necesare și vom arăta cu exemple cum sunt exact acestea folosit în practică.

Yandex.RTB R-A-339285-1

Pentru a înțelege care este unghiul format atunci când două drepte se intersectează, trebuie să ne amintim însăși definiția unghiului, perpendicularității și punctului de intersecție.

Definiția 1

Numim două drepte care se intersectează dacă au un punct comun. Acest punct se numește punctul de intersecție a două drepte.

Fiecare linie dreaptă este împărțită de un punct de intersecție în raze. Ambele linii drepte formează 4 unghiuri, dintre care două sunt verticale și două sunt adiacente. Dacă știm măsura unuia dintre ele, atunci le putem determina pe cele rămase.

Să presupunem că știm că unul dintre unghiuri este egal cu α. În acest caz, unghiul care este vertical în raport cu acesta va fi, de asemenea, egal cu α. Pentru a găsi unghiurile rămase, trebuie să calculăm diferența 180 ° - α. Dacă α este egal cu 90 de grade, atunci toate unghiurile vor fi unghiuri drepte. Liniile care se intersectează în unghi drept sunt numite perpendiculare (un articol separat este dedicat conceptului de perpendicularitate).

Aruncă o privire la poză:

Să trecem la formularea definiției principale.

Definiția 2

Unghiul format din două drepte care se intersectează este măsura celui mai mic dintre cele 4 unghiuri care formează aceste două drepte.

Din definiție trebuie trasă o concluzie importantă: dimensiunea unghiului în acest caz va fi exprimată de oricare număr realîn intervalul (0, 90). Dacă liniile sunt perpendiculare, atunci unghiul dintre ele va fi în orice caz egal cu 90 de grade.

Capacitatea de a găsi măsura unghiului dintre două drepte care se intersectează este utilă pentru rezolvarea multor probleme practice. Metoda de rezolvare poate fi aleasă din mai multe opțiuni.

Pentru început, putem lua metode geometrice. Dacă știm ceva despre unghiurile complementare, atunci le putem asocia cu unghiul de care avem nevoie folosind proprietățile figurilor egale sau similare. De exemplu, dacă cunoaștem laturile unui triunghi și trebuie să calculăm unghiul dintre liniile pe care sunt situate aceste laturi, atunci teorema cosinusului este potrivită pentru soluția noastră. Dacă avem condiția triunghi dreptunghic, atunci pentru calcule vom avea nevoie și de cunoștințe despre sinus, cosinus și tangenta unui unghi.

Metoda coordonatelor este, de asemenea, foarte convenabilă pentru rezolvarea problemelor de acest tip. Să explicăm cum să-l folosim corect.

Avem un sistem de coordonate dreptunghiular (cartezian) O x y, în care sunt date două drepte. Să le notăm cu literele a și b. Liniile drepte pot fi descrise folosind unele ecuații. Liniile originale au un punct de intersecție M. Cum se determină unghiul necesar (să-l notăm α) între aceste drepte?

Să începem prin a formula principiul de bază al găsirii unui unghi în condiții date.

Știm că conceptul de linie dreaptă este strâns legat de concepte precum un vector de direcție și un vector normal. Dacă avem o ecuație a unei anumite drepte, putem lua din ea coordonatele acestor vectori. Putem face acest lucru pentru două linii care se intersectează simultan.

Unghiul subtins de două drepte care se intersectează poate fi găsit folosind:

  • unghiul dintre vectorii de direcție;
  • unghiul dintre vectorii normali;
  • unghiul dintre vectorul normal al unei linii și vectorul direcție al celeilalte.

Acum să ne uităm la fiecare metodă separat.

1. Să presupunem că avem o dreaptă a cu un vector de direcție a → = (a x, a y) și o dreaptă b cu un vector de direcție b → (b x, b y). Acum să reprezentăm doi vectori a → și b → din punctul de intersecție. După aceasta vom vedea că fiecare va fi situat pe propria linie dreaptă. Apoi avem patru opțiuni pentru aranjarea lor relativă. Vezi ilustrația:

Dacă unghiul dintre doi vectori nu este obtuz, atunci va fi unghiul de care avem nevoie între liniile care se intersectează a și b. Dacă este obtuz, atunci unghiul dorit va fi egal cu unghiul adiacent unghiului a →, b → ^. Astfel, α = a → , b → ^ dacă a → , b → ^ ≤ 90 ° , și α = 180 ° - a → , b → ^ dacă a → , b → ^ > 90 ° .

Pe baza faptului că cosinusurile unghiurilor egale sunt egale, putem rescrie egalitățile rezultate astfel: cos α = cos a →, b → ^, dacă a →, b → ^ ≤ 90 °; cos α = cos 180 ° - a →, b → ^ = - cos a →, b → ^, dacă a →, b → ^ > 90 °.

În al doilea caz s-au folosit formule de reducere. Astfel,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 - cos a → , b → ^ , cos a → , b → ^< 0 ⇔ cos α = cos a → , b → ^

Să scriem ultima formulă în cuvinte:

Definiția 3

Cosinusul unghiului format din două drepte care se intersectează va fi egal cu modulul cosinusului unghiului dintre vectorii săi de direcție.

Forma generală a formulei pentru cosinusul unghiului dintre doi vectori a → = (a x , a y) și b → = (b x , b y) arată astfel:

cos a → , b → ^ = a → , b → ^ a → b → = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

Din aceasta putem deriva formula pentru cosinusul unghiului dintre două drepte date:

cos α = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2 = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

Apoi unghiul în sine poate fi găsit folosind următoarea formulă:

α = a r c cos a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

Aici a → = (a x , a y) și b → = (b x , b y) sunt vectorii de direcție ai dreptelor date.

Să dăm un exemplu de rezolvare a problemei.

Exemplul 1

Într-un sistem de coordonate dreptunghiular pe un plan, sunt date două drepte care se intersectează a și b. Ele pot fi descrise prin ecuațiile parametrice x = 1 + 4 · λ y = 2 + λ λ ∈ R și x 5 = y - 6 - 3. Calculați unghiul dintre aceste drepte.

Soluţie

Avem o ecuație parametrică în starea noastră, ceea ce înseamnă că pentru această linie putem nota imediat coordonatele vectorului său de direcție. Pentru a face acest lucru, trebuie să luăm valorile coeficienților pentru parametru, adică. dreapta x = 1 + 4 λ y = 2 + λ λ ∈ R va avea un vector de direcție a → = (4, 1).

A doua linie este descrisă folosind ecuația canonică x 5 = y - 6 - 3. Aici putem lua coordonatele de la numitori. Astfel, această dreaptă are un vector de direcție b → = (5, - 3) .

Apoi, trecem direct la găsirea unghiului. Pentru a face acest lucru, pur și simplu înlocuiți coordonatele existente ale celor doi vectori în formula de mai sus α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 . Obținem următoarele:

α = a r c cos 4 5 + 1 (- 3) 4 2 + 1 2 5 2 + (- 3) 2 = a r c cos 17 17 34 = a r c cos 1 2 = 45 °

Răspuns: Aceste linii drepte formează un unghi de 45 de grade.

Putem rezolva o problemă similară găsind unghiul dintre vectorii normali. Dacă avem o dreaptă a cu un vector normal n a → = (n a x , n a y) și o dreaptă b cu un vector normal n b → = (n b x , n b y), atunci unghiul dintre ele va fi egal cu unghiul dintre n a → și n b → sau unghiul care va fi adiacent lui n a →, n b → ^. Această metodă este prezentată în imagine:

Formulele pentru calcularea cosinusului unghiului dintre liniile care se intersectează și acest unghi în sine folosind coordonatele vectorilor normali arată astfel:

cos α = cos n a → , n b → ^ = n a x n b x + n a y + n de y n a x 2 + n a y 2 n b x 2 + n de y 2 α = a r c cos n a x n b x + n a y + n de y n a x 2 + n a y 2 n b x 2 + n b y 2

Aici n a → și n b → denotă vectorii normali ai două drepte date.

Exemplul 2

Într-un sistem de coordonate dreptunghiular, două linii drepte sunt date folosind ecuațiile 3 x + 5 y - 30 = 0 și x + 4 y - 17 = 0. Găsiți sinusul și cosinusul unghiului dintre ele și mărimea acestui unghi în sine.

Soluţie

Liniile originale sunt specificate folosind ecuații de linii normale de forma A x + B y + C = 0. Notăm vectorul normal ca n → = (A, B). Să găsim coordonatele primului vector normal pentru o linie și să le scriem: n a → = (3, 5) . Pentru a doua linie x + 4 y - 17 = 0, vectorul normal va avea coordonatele n b → = (1, 4). Acum să adăugăm valorile obținute la formulă și să calculăm totalul:

cos α = cos n a → , n b → ^ = 3 1 + 5 4 3 2 + 5 2 1 2 + 4 2 = 23 34 17 = 23 2 34

Dacă cunoaștem cosinusul unui unghi, atunci putem calcula sinusul acestuia folosind identitatea trigonometrică de bază. Deoarece unghiul α format din drepte nu este obtuz, atunci sin α = 1 - cos 2 α = 1 - 23 2 34 2 = 7 2 34.

În acest caz, α = a r c cos 23 2 34 = a r c sin 7 2 34.

Răspuns: cos α = 23 2 34, sin α = 7 2 34, α = a r c cos 23 2 34 = a r c sin 7 2 34

Să analizăm ultimul caz - găsirea unghiului dintre drepte dacă cunoaștem coordonatele vectorului de direcție al unei drepte și vectorul normal al celeilalte.

Să presupunem că dreapta a are un vector de direcție a → = (a x , a y) , iar dreapta b are un vector normal n b → = (n b x , n b y) . Trebuie să setăm acești vectori deoparte de punctul de intersecție și să luăm în considerare toate opțiunile pentru pozițiile lor relative. Vezi in poza:

Dacă unghiul dintre vectorii dați nu este mai mare de 90 de grade, se dovedește că va completa unghiul dintre a și b la un unghi drept.

a → , n b → ^ = 90 ° - α dacă a → , n b → ^ ≤ 90 ° .

Dacă este mai mică de 90 de grade, atunci obținem următoarele:

a → , n b → ^ > 90 ° , apoi a → , n b → ^ = 90 ° + α

Folosind regula egalității cosinusurilor de unghiuri egale, scriem:

cos a → , n b → ^ = cos (90 ° - α) = sin α pentru a → , n b → ^ ≤ 90 ° .

cos a → , n b → ^ = cos 90 ° + α = - sin α pentru a → , n b → ^ > 90 ° .

Astfel,

sin α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° - cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , a → , n b → ^ > 0 - cos a → , n b → ^ , a → , n b → ^< 0 ⇔ ⇔ sin α = cos a → , n b → ^

Să formulăm o concluzie.

Definiția 4

Pentru a găsi sinusul unghiului dintre două drepte care se intersectează pe un plan, trebuie să calculați modulul cosinusului unghiului dintre vectorul de direcție al primei linii și vectorul normal al celei de-a doua.

Să notăm formulele necesare. Aflarea sinusului unui unghi:

sin α = cos a → , n b → ^ = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2

Găsirea unghiului în sine:

α = a r c sin = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2

Aici a → este vectorul de direcție al primei linii, iar n b → este vectorul normal al celei de-a doua.

Exemplul 3

Două drepte care se intersectează sunt date de ecuațiile x - 5 = y - 6 3 și x + 4 y - 17 = 0. Aflați unghiul de intersecție.

Soluţie

Luăm coordonatele ghidului și ale vectorului normal din ecuațiile date. Rezultă a → = (- 5, 3) și n → b = (1, 4). Luăm formula α = a r c sin = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2 și calculăm:

α = a r c sin = - 5 1 + 3 4 (- 5) 2 + 3 2 1 2 + 4 2 = a r c sin 7 2 34

Vă rugăm să rețineți că am luat ecuațiile din problema anterioară și am obținut exact același rezultat, dar într-un mod diferit.

Răspuns:α = a r c sin 7 2 34

Să prezentăm o altă modalitate de a găsi unghiul dorit folosind coeficienții unghiulari ai liniilor drepte date.

Avem o linie a, care este definită într-un sistem de coordonate dreptunghiular folosind ecuația y = k 1 x + b 1, și o linie b, definită ca y = k 2 x + b 2. Acestea sunt ecuații ale dreptelor cu pante. Pentru a găsi unghiul de intersecție, folosim formula:

α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1, unde k 1 și k 2 sunt pantele dreptelor date. Pentru a obține această înregistrare s-au folosit formule pentru determinarea unghiului prin coordonatele vectorilor normali.

Exemplul 4

Există două drepte care se intersectează într-un plan, dat de ecuaţii y = - 3 5 x + 6 și y = - 1 4 x + 17 4 . Calculați valoarea unghiului de intersecție.

Soluţie

Coeficienții unghiulari ai dreptelor noastre sunt egali cu k 1 = - 3 5 și k 2 = - 1 4. Să le adăugăm la formula α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 și să calculăm:

α = a r c cos - 3 5 · - 1 4 + 1 - 3 5 2 + 1 · - 1 4 2 + 1 = a r c cos 23 20 34 24 · 17 16 = a r c cos 23 2 34

Răspuns:α = a r c cos 23 2 34

În concluziile acestui paragraf, trebuie menționat că formulele pentru găsirea unghiului prezentate aici nu trebuie învățate pe de rost. Pentru a face acest lucru, este suficient să cunoașteți coordonatele ghidajelor și/sau ale vectorilor normali ai liniilor date și să le puteți determina folosind diferite tipuri de ecuații. Dar este mai bine să vă amintiți sau să scrieți formulele pentru calcularea cosinusului unui unghi.

Cum se calculează unghiul dintre liniile care se intersectează în spațiu

Calculul unui astfel de unghi poate fi redus la calcularea coordonatelor vectorilor de direcție și determinarea mărimii unghiului format de acești vectori. Pentru astfel de exemple se folosește același raționament pe care l-am dat mai înainte.

Să presupunem că avem un sistem de coordonate dreptunghiular situat în spațiul tridimensional. Conține două drepte a și b cu un punct de intersecție M. Pentru a calcula coordonatele vectorilor de direcție, trebuie să cunoaștem ecuațiile acestor drepte. Să notăm vectorii de direcție a → = (a x , a y , a z) și b → = (b x , b y , b z) . Pentru a calcula cosinusul unghiului dintre ele, folosim formula:

cos α = cos a → , b → ^ = a → , b → a → b → = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2

Pentru a găsi unghiul în sine, avem nevoie de această formulă:

α = a r c cos a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2

Exemplul 5

Avem o linie definită în spațiul tridimensional folosind ecuația x 1 = y - 3 = z + 3 - 2. Se știe că se intersectează cu axa O z. Calculați unghiul de interceptare și cosinusul acelui unghi.

Soluţie

Să notăm unghiul care trebuie calculat cu litera α. Să notăm coordonatele vectorului direcție pentru prima dreaptă – a → = (1, - 3, - 2) . Pentru aplicarea axei putem lua vector de coordonate k → = (0, 0, 1) ca ghid. Am primit datele necesare și le putem adăuga la formula dorită:

cos α = cos a → , k → ^ = a → , k → a → k → = 1 0 - 3 0 - 2 1 1 2 + (- 3) 2 + (- 2) 2 0 2 + 0 2 + 1 2 = 2 8 = 1 2

Ca rezultat, am constatat că unghiul de care avem nevoie va fi egal cu a r c cos 1 2 = 45 °.

Răspuns: cos α = 1 2 , α = 45 ° .

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Va fi util pentru fiecare student care se pregătește pentru examenul de stat unificat la matematică să repete subiectul „Găsirea unui unghi între linii drepte”. După cum arată statisticile, la trecerea testului de certificare, sarcinile din această secțiune de stereometrie provoacă dificultăți pentru cantitate mare elevilor. În același timp, sarcinile care necesită găsirea unghiului dintre liniile drepte se găsesc în Examenul de stat unificat atât pentru nivel de profil. Aceasta înseamnă că toată lumea ar trebui să le poată rezolva.

Repere

Există 4 tipuri de poziții relative ale liniilor în spațiu. Ele pot coincide, se intersectează, pot fi paralele sau se intersectează. Unghiul dintre ele poate fi acut sau drept.

Pentru a găsi unghiul dintre linii în Examenul de stat unificat sau, de exemplu, în rezolvare, școlarii din Moscova și alte orașe pot folosi mai multe moduri de a rezolva problemele din această secțiune de stereometrie. Puteți finaliza sarcina folosind construcții clasice. Pentru a face acest lucru, merită să învățați axiomele și teoremele de bază ale stereometriei. Elevul trebuie să fie capabil să raționeze logic și să creeze desene pentru a aduce sarcina la o problemă planimetrică.

De asemenea, puteți utiliza metoda vectorului de coordonate folosind formule, reguli și algoritmi simpli. Principalul lucru în acest caz este să efectuați corect toate calculele. Perfecționați-vă abilitățile în rezolvarea problemelor din stereometrie și din alte domenii curs şcolar te va ajuta proiect educațional„Șkolkovo”.

unghiul dintre planuri

Se consideră două plane α 1 și α 2, definite, respectiv, de ecuațiile:

Sub unghiîntre două planuri vom înțelege unul dintre unghiuri diedrice format din aceste avioane. Este evident că unghiul dintre vectorii normali și planele α 1 și α 2 este egal cu unul dintre unghiurile diedrice adiacente indicate sau . De aceea . Deoarece Şi , Asta

.

Exemplu. Determinați unghiul dintre plane x+2y-3z+4=0 și 2 x+3y+z+8=0.

Condiție pentru paralelismul a două plane.

Două plane α 1 și α 2 sunt paralele dacă și numai dacă vectorii lor normali sunt paraleli și, prin urmare .

Deci, două plane sunt paralele între ele dacă și numai dacă coeficienții coordonatelor corespunzătoare sunt proporționale:

sau

Condiția de perpendicularitate a planurilor.

Este clar că două plane sunt perpendiculare dacă și numai dacă vectorii lor normali sunt perpendiculari și, prin urmare, sau .

Astfel, .

Exemple.

DREPT ÎN SPAȚIU.

ECUAȚIE VECTORALĂ PENTRU O LINIE.

ECUATII DIRECTE PARAMETRICE

Poziția unei linii în spațiu este complet determinată prin specificarea oricăruia dintre punctele sale fixe M 1 și un vector paralel cu această dreaptă.

Se numeste un vector paralel cu o dreapta ghiduri vector al acestei linii.

Deci, lăsați linia dreaptă l trece printr-un punct M 1 (x 1 , y 1 , z 1), situată pe o dreaptă paralelă cu vectorul .

Luați în considerare un punct arbitrar M(x,y,z) pe o linie dreaptă. Din figură este clar că .

Vectori și sunt coliniare, deci există un astfel de număr t, ce , unde este multiplicatorul t poate accepta orice valoare numerică in functie de pozitia punctului M pe o linie dreaptă. Factor t numit parametru. După ce au desemnat vectorii de rază ai punctelor M 1 și M respectiv, prin și , obținem . Această ecuație se numește vector ecuația unei linii drepte. Arată că pentru fiecare valoare a parametrului t corespunde vectorului raza unui punct M, întins pe o linie dreaptă.

Să scriem această ecuație sub formă de coordonate. Rețineți că, si de aici

Ecuațiile rezultate se numesc parametrice ecuațiile unei linii drepte.

La modificarea unui parametru t se schimbă coordonatele x, yŞi zși punct M se deplasează în linie dreaptă.


ECUAȚII CANONICE ALE DIRECTULUI

Lasă M 1 (x 1 , y 1 , z 1) – un punct situat pe o linie dreaptă l, Și este vectorul său de direcție. Să luăm din nou un punct arbitrar pe linie M(x,y,z)și luați în considerare vectorul .

Este clar că vectorii sunt, de asemenea, coliniari, deci coordonatele lor corespunzătoare trebuie să fie proporționale, prin urmare,

canonic ecuațiile unei linii drepte.

Nota 1. Rețineți că ecuațiile canonice ale dreptei pot fi obținute din cele parametrice prin eliminarea parametrului t. Într-adevăr, din ecuațiile parametrice obținem sau .

Exemplu. Scrieți ecuația dreptei în formă parametrică.

Să notăm , de aici x = 2 + 3t, y = –1 + 2t, z = 1 –t.

Nota 2. Fie linia dreaptă perpendiculară pe una dintre axele de coordonate, de exemplu axa Bou. Atunci vectorul direcție al dreptei este perpendicular Bou, prin urmare, m=0. În consecință, ecuațiile parametrice ale dreptei vor lua forma

Excluzând parametrul din ecuații t, obținem ecuațiile dreptei în forma

Totuși, și în acest caz, suntem de acord să scriem formal ecuațiile canonice ale dreptei în forma . Astfel, dacă numitorul uneia dintre fracții este zero, aceasta înseamnă că linia dreaptă este perpendiculară pe axa de coordonate corespunzătoare.

Similar cu ecuațiile canonice corespunde unei drepte perpendiculare pe axele BouŞi Oi sau paralel cu axa Oz.

Exemple.

ECUAȚII GENERALE ALE LINEILOR DREPTĂ CA LINII DE INTERSECȚIE A DOUA PLANURI

Prin fiecare linie dreaptă din spațiu există nenumărate avioane. Oricare două dintre ele, intersectându-se, îl definesc în spațiu. În consecință, ecuațiile oricăror două astfel de planuri, considerate împreună, reprezintă ecuațiile acestei drepte.

În general, oricare două plane neparalele date de ecuațiile generale

determinați linia dreaptă a intersecției lor. Aceste ecuații se numesc ecuații generale direct.

Exemple.

Construiți o dreaptă dată de ecuații

Pentru a construi o linie dreaptă, este suficient să găsiți oricare dintre punctele sale. Cel mai simplu mod este să selectați punctele de intersecție ale unei linii drepte cu planuri de coordonate. De exemplu, punctul de intersecție cu planul xOy obţinem din ecuaţiile dreptei, presupunând z= 0:

După ce am rezolvat acest sistem, găsim ideea M 1 (1;2;0).

În mod similar, presupunând y= 0, obținem punctul de intersecție al dreptei cu planul xOz:

Din ecuațiile generale ale unei linii drepte se poate trece la ecuațiile ei canonice sau parametrice. Pentru a face acest lucru, trebuie să găsiți un punct M 1 pe o dreaptă și vectorul direcție al unei drepte.

Coordonatele punctului M 1 obținem din acest sistem de ecuații, dând uneia dintre coordonate o valoare arbitrară. Pentru a găsi vectorul direcție, rețineți că acest vector trebuie să fie perpendicular pe ambii vectori normali Şi . Prin urmare, dincolo de vectorul direcție al dreptei l puteți lua produsul vectorial al vectorilor normali:

.

Exemplu. Duce ecuații generale direct la forma canonică.

Să găsim un punct situat pe o linie. Pentru a face acest lucru, alegem în mod arbitrar una dintre coordonate, de exemplu, y= 0 și rezolvați sistemul de ecuații:

Vectorii normali ai planurilor care definesc dreapta au coordonate Prin urmare, vectorul direcție va fi drept

. Prin urmare, l: .


unghiul dintre drepte

Unghiîntre drepte în spațiu vom numi oricare dintre unghiurile adiacente formate din două drepte trasate printr-un punct arbitrar paralel cu datele.

Să fie date două drepte în spațiu:

Evident, unghiul φ dintre drepte poate fi luat ca unghi între vectorii lor de direcție și . Deoarece , folosind formula pentru cosinusul unghiului dintre vectori obținem

O. Să fie date două drepte Aceste linii drepte, așa cum este indicat în capitolul 1, formează diverse unghiuri pozitive și negative, care pot fi fie acute, fie obtuze. Cunoscând unul dintre aceste unghiuri, putem găsi cu ușurință oricare altul.

Apropo, pentru toate aceste unghiuri valoarea numerică a tangentei este aceeași, diferența poate fi doar în semn

Ecuații de linii. Numerele sunt proiecțiile vectorilor de direcție ai primei și celei de-a doua drepte. Unghiul dintre acești vectori este egal cu unul dintre unghiurile formate de drepte. Prin urmare, problema se rezumă la determinarea unghiului dintre vectori

Pentru simplitate, putem fi de acord că unghiul dintre două drepte este înțeles ca un unghi pozitiv acut (ca, de exemplu, în Fig. 53).

Atunci tangenta acestui unghi va fi întotdeauna pozitivă. Astfel, dacă există un semn minus în partea dreaptă a formulei (1), atunci trebuie să îl renunțăm, adică să salvăm doar valoarea absolută.

Exemplu. Determinați unghiul dintre liniile drepte

Conform formulei (1) avem

Cu. Dacă se indică care dintre laturile unghiului este începutul și care este sfârșitul lui, atunci, numărând întotdeauna direcția unghiului în sens invers acelor de ceasornic, putem extrage ceva mai mult din formula (1). După cum se vede ușor din fig. 53, semnul obținut în partea dreaptă a formulei (1) va indica ce fel de unghi - acut sau obtuz - se formează a doua linie dreaptă cu prima.

(Într-adevăr, din Fig. 53 vedem că unghiul dintre primul și al doilea vector de direcție este fie egal cu unghiul dorit dintre liniile drepte, fie diferă de acesta cu ±180°.)

d. Dacă liniile sunt paralele, atunci vectorii lor de direcție sunt paraleli Aplicând condiția de paralelism a doi vectori, obținem!

Aceasta este o condiție necesară și suficientă pentru paralelismul a două linii.

Exemplu. Direct

sunt paralele deoarece

e. Dacă liniile sunt perpendiculare, atunci vectorii lor de direcție sunt și ei perpendiculari. Aplicând condiția de perpendicularitate a doi vectori, obținem condiția de perpendicularitate a două drepte și anume

Exemplu. Direct

sunt perpendiculare datorită faptului că

În legătură cu condițiile de paralelism și perpendicularitate, vom rezolva următoarele două probleme.

f. Desenați o dreaptă printr-un punct paralel cu dreapta dată

Soluția se realizează așa. Deoarece linia dorită este paralelă cu aceasta, atunci pentru vectorul său de direcție îl putem lua pe aceeași cu cea a dreptei date, adică un vector cu proiecțiile A și B. Și atunci ecuația dreptei dorite se va scrie în forma (§ 1)

Exemplu. Ecuația unei drepte care trece prin punctul (1; 3) paralel cu dreapta

va fi urmatorul!

g. Desenați o dreaptă printr-un punct perpendicular pe dreapta dată

Aici nu mai este potrivit să luăm vectorul cu proiecțiile A și ca vector de ghidare, dar este necesar să luăm vectorul perpendicular pe acesta. Prin urmare, proiecțiile acestui vector trebuie alese în funcție de condiția de perpendicularitate a ambilor vectori, adică în funcție de condiția

Această condiție poate fi îndeplinită în nenumărate moduri, deoarece aici există o ecuație cu două necunoscute

Exemplu. Ecuația unei drepte care trece prin punctul (-7; 2) într-o dreaptă perpendiculară

vor fi următoarele (după formula a doua)!

h. În cazul în care liniile sunt date prin ecuații de forma

Să fie date linii drepte în spațiu lŞi m. Prin un punct A al spațiului tragem linii drepte l 1 || lŞi m 1 || m(Fig. 138).

Rețineți că punctul A poate fi ales în mod arbitrar, poate fi situat pe una dintre aceste linii; Dacă drept lŞi m intersectează, atunci A poate fi luat drept punct de intersecție al acestor drepte ( l 1 = lŞi m 1 = m).

Unghiul dintre liniile neparalele lŞi m este valoarea celui mai mic dintre unghiurile adiacente formate din linii care se intersectează l 1 Şi m 1 (l 1 || l, m 1 || m). Unghiul dintre liniile paralele este considerat egal cu zero.

Unghiul dintre liniile drepte lŞi m notat cu \(\widehat((l;m))\). Din definiție rezultă că dacă se măsoară în grade, atunci 0° < \(\widehat((l;m)) \) < 90°, iar dacă este în radiani, atunci 0 < \(\widehat((l;m)) \) < π / 2 .

Sarcină. Dat un cub ABCDA 1 B 1 C 1 D 1 (Fig. 139).

Aflați unghiul dintre liniile drepte AB și DC 1.

Încrucișarea liniilor drepte AB și DC 1. Deoarece linia dreaptă DC este paralelă cu dreapta AB, unghiul dintre liniile drepte AB și DC 1, conform definiției, este egal cu \(\widehat(C_(1)DC)\).

Prin urmare, \(\widehat((AB;DC_1))\) = 45°.

Direct lŞi m sunt numite perpendicular, dacă \(\widehat((l;m)) \) = π / 2. De exemplu, într-un cub

Calculul unghiului dintre drepte.

Problema calculării unghiului dintre două drepte în spațiu se rezolvă în același mod ca și în plan. Să notăm cu φ mărimea unghiului dintre drepte l 1 Şi l 2, iar prin ψ - mărimea unghiului dintre vectorii de direcție O Şi b aceste linii drepte.

Atunci dacă

ψ <90° (рис. 206, а), то φ = ψ; если же ψ >90° (Fig. 206.6), apoi φ = 180° - ψ. Evident, în ambele cazuri este adevărată egalitatea cos φ = |cos ψ|. Conform formulei (cosinusul unghiului dintre vectorii nenuli a și b este egal cu produsul scalar al acestor vectori împărțit la produsul lungimilor lor) avem

$$ cos\psi = cos\widehat((a; b)) = \frac(a\cdot b)(|a|\cdot |b|) $$

prin urmare,

$$ cos\phi = \frac(|a\cdot b|)(|a|\cdot |b|) $$

Fie dreptele date de ecuațiile lor canonice

$$ \frac(x-x_1)(a_1)=\frac(y-y_1)(a_2)=\frac(z-z_1)(a_3) \;\; Și \;\; \frac(x-x_2)(b_1)=\frac(y-y_2)(b_2)=\frac(z-z_2)(b_3) $$

Apoi unghiul φ dintre linii este determinat folosind formula

$$ cos\phi = \frac(|a_(1)b_1+a_(2)b_2+a_(3)b_3|)(\sqrt((a_1)^2+(a_2)^2+(a_3)^2 )\sqrt((b_1)^2+(b_2)^2+(b_3)^2)) (1)$$

Dacă una dintre linii (sau ambele) este dată de ecuații non-canonice, atunci pentru a calcula unghiul trebuie să găsiți coordonatele vectorilor de direcție ai acestor linii și apoi să utilizați formula (1).

Sarcina 1. Calculați unghiul dintre linii

$$ \frac(x+3)(-\sqrt2)=\frac(y)(\sqrt2)=\frac(z-7)(-2) \;\;şi\;\; \frac(x)(\sqrt3)=\frac(y+1)(\sqrt3)=\frac(z-1)(\sqrt6) $$

Vectorii de direcție ai liniilor drepte au coordonate:

a = (-√2; √2; -2), b = (√3 ; √3 ; √6 ).

Folosind formula (1) găsim

$$ cos\phi = \frac(|-\sqrt6+\sqrt6-2\sqrt6|)(\sqrt(2+2+4)\sqrt(3+3+6))=\frac(2\sqrt6)( 2\sqrt2\cdot 2\sqrt3)=\frac(1)(2) $$

Prin urmare, unghiul dintre aceste linii este de 60°.

Sarcina 2. Calculați unghiul dintre linii

$$ \begin(cases)3x-12z+7=0\\x+y-3z-1=0\end(cases) și \begin(cases)4x-y+z=0\\y+z+1 =0\end(cazuri) $$

În spatele vectorului ghid O Pe prima linie luăm produsul vectorial al vectorilor normali n 1 = (3; 0; -12) și n 2 = (1; 1; -3) planuri care definesc această dreaptă. Folosind formula \(=\begin(vmatrix) i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end(vmatrix) \) obținem

$$ a==\begin(vmatrix) i & j & k \\ 3 & 0 & -12 \\ 1 & 1 & -3 \end(vmatrix)=12i-3i+3k $$

În mod similar, găsim vectorul direcție al celei de-a doua drepte:

$$ b=\begin(vmatrix) i & j & k \\ 4 & -1 & 1 \\ 0 & 1 & 1 \end(vmatrix)=-2i-4i+4k $$

Dar folosind formula (1) calculăm cosinusul unghiului dorit:

$$ cos\phi = \frac(|12\cdot (-2)-3(-4)+3\cdot 4|)(\sqrt(12^2+3^2+3^2)\sqrt(2) ^2+4^2+4^2))=0 $$

Prin urmare, unghiul dintre aceste linii este de 90°.

Sarcina 3.În piramida triunghiulară MABC, muchiile MA, MB și MC sunt reciproc perpendiculare (Fig. 207);

lungimile lor sunt respectiv 4, 3, 6. Punctul D este mijlocul [MA]. Aflați unghiul φ dintre liniile CA și DB.

Fie CA și DB vectorii de direcție ai dreptelor CA și DB.

Să luăm punctul M ca origine a coordonatelor. Prin condiția ecuației avem A (4; 0; 0), B(0; 0; 3), C(0; 6; 0), D (2; 0; 0). Prin urmare \(\overrightarrow(CA)\) = (4; - 6;0), \(\overrightarrow(DB)\)= (-2; 0; 3). Să folosim formula (1):

$$ cos\phi=\frac(|4\cdot (-2)+(-6)\cdot 0+0\cdot 3|)(\sqrt(16+36+0)\sqrt(4+0+9 )) $$

Folosind tabelul cosinus, aflăm că unghiul dintre liniile drepte CA și DB este de aproximativ 72°.