Atmosferă(din grecescul atmos - abur și spharia - minge) - învelișul de aer al Pământului, care se rotește odată cu acesta. Dezvoltarea atmosferei a fost strâns legată de procesele geologice și geochimice care au loc pe planeta noastră, precum și de activitățile organismelor vii.

Limita inferioară a atmosferei coincide cu suprafața Pământului, deoarece aerul pătrunde în cei mai mici pori din sol și este dizolvat chiar și în apă.

Limita superioară la o altitudine de 2000-3000 km se transformă treptat în spațiul cosmic.

Datorită atmosferei, care conține oxigen, viața pe Pământ este posibilă. Oxigenul atmosferic este folosit în procesul de respirație al oamenilor, animalelor și plantelor.

Dacă nu ar exista atmosferă, Pământul ar fi la fel de liniștit ca Luna. La urma urmei, sunetul este vibrația particulelor de aer. Culoarea albastră a cerului se explică prin faptul că razele soarelui, care trec prin atmosferă, ca printr-o lentilă, sunt descompuse în culorile lor componente. În acest caz, razele de culori albastre și albastre sunt cele mai împrăștiate.

Atmosfera captează cea mai mare parte a radiațiilor ultraviolete ale soarelui, ceea ce are un efect dăunător asupra organismelor vii. De asemenea, reține căldura lângă suprafața Pământului, împiedicând răcirea planetei noastre.

Structura atmosferei

În atmosferă se pot distinge mai multe straturi, care diferă ca densitate (Fig. 1).

troposfera

troposfera- cel mai de jos strat al atmosferei, a cărui grosime deasupra polilor este de 8-10 km, la latitudini temperate - 10-12 km, iar deasupra ecuatorului - 16-18 km.

Orez. 1. Structura atmosferei Pământului

Aerul din troposferă este încălzit de suprafața pământului, adică de pământ și apă. Prin urmare, temperatura aerului din acest strat scade cu înălțimea cu o medie de 0,6 °C la fiecare 100 m La limita superioară a troposferei ajunge la -55 °C. În același timp, în zona ecuatorului de la limita superioară a troposferei, temperatura aerului este de -70 °C, iar în zona Polului Nord -65 °C.

Aproximativ 80% din masa atmosferei este concentrată în troposferă, aproape toți vaporii de apă sunt localizați, au loc furtuni, furtuni, nori și precipitații, și are loc mișcarea verticală (convecție) și orizontală (vânt) a aerului.

Putem spune că vremea se formează în principal în troposferă.

Stratosferă

Stratosferă- un strat al atmosferei situat deasupra troposferei la o altitudine de 8 până la 50 km. Culoarea cerului în acest strat apare violet, ceea ce se explică prin subțirea aerului, datorită căreia razele soarelui aproape că nu sunt împrăștiate.

Stratosfera conține 20% din masa atmosferei. Aerul din acest strat este rarefiat, practic nu există vapori de apă și, prin urmare, aproape nu se formează nori și precipitații. Cu toate acestea, în stratosferă se observă curenți de aer stabili, a căror viteză atinge 300 km/h.

Acest strat este concentrat ozon(ecran de ozon, ozonosferă), un strat care absoarbe razele ultraviolete, împiedicându-le să ajungă pe Pământ și protejând astfel organismele vii de pe planeta noastră. Datorită ozonului, temperatura aerului la limita superioară a stratosferei variază între -50 și 4-55 °C.

Între mezosferă și stratosferă există o zonă de tranziție - stratopauza.

Mezosfera

Mezosfera- un strat al atmosferei situat la o altitudine de 50-80 km. Densitatea aerului aici este de 200 de ori mai mică decât la suprafața Pământului. Culoarea cerului în mezosferă apare neagră, iar stelele sunt vizibile în timpul zilei. Temperatura aerului scade la -75 (-90)°C.

La o altitudine de 80 km începe termosferă. Temperatura aerului din acest strat crește brusc la o înălțime de 250 m, apoi devine constantă: la o altitudine de 150 km ajunge la 220-240 ° C; la o altitudine de 500-600 km depăşeşte 1500 °C.

În mezosferă și termosferă, sub influența razelor cosmice, moleculele de gaz se dezintegrează în particule încărcate (ionizate) de atomi, așa că această parte a atmosferei se numește ionosferă- un strat de aer foarte rarefiat, situat la o altitudine de 50 până la 1000 km, format în principal din atomi de oxigen ionizat, molecule de oxid de azot și electroni liberi. Acest strat este caracterizat de o electrificare ridicată, iar undele radio lungi și medii sunt reflectate din el, ca dintr-o oglindă.

În ionosferă apar aurore - strălucirea gazelor rarefiate sub influența particulelor încărcate electric care zboară de la Soare - și se observă fluctuații bruște ale câmpului magnetic.

Exosfera

Exosfera- stratul exterior al atmosferei situat peste 1000 km. Acest strat se mai numește și sferă de împrăștiere, deoarece particulele de gaz se deplasează aici cu viteză mare și pot fi împrăștiate în spațiul cosmic.

Compoziția atmosferică

Atmosfera este un amestec de gaze format din azot (78,08%), oxigen (20,95%), dioxid de carbon(0,03%), argon (0,93%), o cantitate mică de heliu, neon, xenon, cripton (0,01%), ozon și alte gaze, dar conținutul lor este neglijabil (Tabelul 1). Compoziția modernă a aerului Pământului a fost stabilită cu mai bine de o sută de milioane de ani în urmă, dar activitatea de producție umană a crescut brusc a dus totuși la schimbarea acesteia. În prezent, există o creștere a conținutului de CO 2 cu aproximativ 10-12%.

Gazele care alcătuiesc atmosfera îndeplinesc diverse roluri funcționale. Cu toate acestea, semnificația principală a acestor gaze este determinată în primul rând de faptul că ele absorb foarte puternic energia radiantă și, prin urmare, au un impact semnificativ asupra regimului de temperatură al suprafeței și atmosferei Pământului.

Tabelul 1. Compoziția chimică a uscatului aerul atmosferic aproape de suprafața pământului

Concentrarea volumului. %

Greutate moleculară, unități

Oxigen

dioxid de carbon

Protoxid de azot

de la 0 la 0,00001

Dioxid de sulf

de la 0 la 0,000007 vara;

de la 0 la 0,000002 iarna

De la 0 la 0,000002

46,0055/17,03061

dioxid de azog

monoxid de carbon

Azot, Cel mai comun gaz din atmosferă, este inactiv din punct de vedere chimic.

Oxigen, spre deosebire de azot, este un element foarte activ din punct de vedere chimic. Funcția specifică a oxigenului este oxidarea materie organică organisme heterotrofe, roci și gaze suboxidate eliberate în atmosferă de vulcani. Fără oxigen, nu ar exista descompunerea materiei organice moarte.

Rolul dioxidului de carbon în atmosferă este extrem de mare. Intră în atmosferă ca urmare a proceselor de ardere, a respirației organismelor vii și a degradarii și este, în primul rând, principalul material de construcție pentru crearea materiei organice în timpul fotosintezei. În plus, capacitatea dioxidului de carbon de a transmite radiația solară cu unde scurte și de a absorbi o parte din radiația termică de undă lungă este de mare importanță, ceea ce va crea așa-numita efect de seră, despre care se va discuta mai jos.

Procesele atmosferice, în special regimul termic al stratosferei, sunt, de asemenea, influențate de ozon. Acest gaz servește ca un absorbant natural al radiațiilor ultraviolete de la soare, iar absorbția radiației solare duce la încălzirea aerului. Valorile medii lunare ale conținutului total de ozon din atmosferă variază în funcție de latitudine și perioada anului în intervalul 0,23-0,52 cm (aceasta este grosimea stratului de ozon la presiunea solului și la temperatură). Există o creștere a conținutului de ozon de la ecuator la poli și un ciclu anual cu un minim toamna și un maxim primăvara.

O proprietate caracteristică a atmosferei este că conținutul gazelor principale (azot, oxigen, argon) se modifică ușor cu altitudinea: la o altitudine de 65 km în atmosferă conținutul de azot este de 86%, oxigen - 19, argon - 0,91 , la o altitudine de 95 km - azot 77, oxigen - 21,3, argon - 0,82%. Constanța compoziției aerului atmosferic pe verticală și pe orizontală este menținută prin amestecarea acestuia.

Pe lângă gaze, aerul conține vapori de apăŞi particule solide. Acestea din urmă pot avea origine atât naturală, cât și artificială (antropică). Acestea sunt polen, cristale mici de sare, praf de drum și impurități de aerosoli. Când razele soarelui pătrund pe fereastră, pot fi văzute cu ochiul liber.

Există în special multe particule în aerul orașelor și mari centre industriale, unde emisiile de gaze nocive și impuritățile acestora formate în timpul arderii combustibilului sunt adăugate aerosolilor.

Concentrația de aerosoli în atmosferă determină transparența aerului, care afectează radiația solară care ajunge la suprafața Pământului. Cei mai mari aerosoli sunt nucleele de condensare (din lat. condensatie- compactare, îngroșare) - contribuie la transformarea vaporilor de apă în picături de apă.

Valoarea vaporilor de apă este determinată în primul rând de faptul că întârzie lungimea de undă lungă radiatii termice suprafața pământului; reprezintă veriga principală a ciclurilor mari și mici de umiditate; crește temperatura aerului în timpul condensării patului de apă.

Cantitatea de vapori de apă din atmosferă variază în timp și spațiu. Astfel, concentrația vaporilor de apă la suprafața pământului variază de la 3% la tropice până la 2-10 (15)% în Antarctica.

Conținutul mediu de vapori de apă în coloana verticală a atmosferei la latitudini temperate este de aproximativ 1,6-1,7 cm (aceasta este grosimea stratului de vapori de apă condensați). Informațiile referitoare la vaporii de apă din diferite straturi ale atmosferei sunt contradictorii. S-a presupus, de exemplu, că în intervalul de altitudine de la 20 la 30 km, umiditatea specifică crește puternic odată cu altitudinea. Cu toate acestea, măsurătorile ulterioare indică o uscăciune mai mare a stratosferei. Aparent, umiditatea specifică din stratosferă depinde puțin de altitudine și este de 2-4 mg/kg.

Variabilitatea conținutului de vapori de apă în troposferă este determinată de interacțiunea proceselor de evaporare, condensare și transport orizontal. Ca urmare a condensului vaporilor de apă, se formează nori, iar precipitațiile cad sub formă de ploaie, grindină și zăpadă.

Procesele tranziții de fază apa curge în principal în troposferă, motiv pentru care norii din stratosferă (la altitudini de 20-30 km) și mezosferă (în apropierea mezopauzei), numiți sidefați și argintii, sunt observați relativ rar, în timp ce norii troposferici acoperă adesea aproximativ 50% din întreaga suprafață a pământului.

Cantitatea de vapori de apă care poate fi conținută în aer depinde de temperatura aerului.

1 m 3 de aer la o temperatură de -20 ° C nu poate conține mai mult de 1 g de apă; la 0 °C - nu mai mult de 5 g; la +10 °C - nu mai mult de 9 g; la +30 °C - nu mai mult de 30 g de apă.

Concluzie: Cu cât temperatura aerului este mai mare, cu atât poate conține mai mulți vapori de apă.

Aerul poate fi bogatŞi nu saturate vapori de apă. Deci, dacă la o temperatură de +30 °C 1 m 3 de aer conține 15 g vapori de apă, aerul nu este saturat cu vapori de apă; dacă 30 g - saturate.

Umiditate absolută este cantitatea de vapori de apă conținută în 1 m3 de aer. Se exprimă în grame. De exemplu, dacă se spune „umiditatea absolută este 15”, aceasta înseamnă că 1 m L conține 15 g de vapori de apă.

Umiditatea relativă- acesta este raportul (în procente) dintre conținutul real de vapori de apă din 1 m 3 de aer și cantitatea de vapori de apă care poate fi conținută în 1 m L la o temperatură dată. De exemplu, dacă radioul a difuzat un raport meteorologic conform căruia umiditatea relativă este de 70%, aceasta înseamnă că aerul conține 70% din vaporii de apă pe care îi poate reține la acea temperatură.

Cu cât umiditatea relativă este mai mare, adică Cu cât aerul este mai aproape de o stare de saturație, cu atât sunt mai probabile precipitații.

În zona ecuatorială se observă întotdeauna o umiditate relativă ridicată (până la 90%), deoarece temperatura aerului rămâne ridicată acolo pe tot parcursul anului și are loc o evaporare mare de la suprafața oceanelor. Umiditatea relativă este mare și în regiunile polare, dar pentru că la temperaturi scăzute chiar și o cantitate mică de vapori de apă face ca aerul să fie saturat sau aproape de saturat. În latitudinile temperate, umiditatea relativă variază în funcție de anotimpuri - este mai mare iarna, mai mică vara.

Umiditatea relativă a aerului în deșert este deosebit de scăzută: 1 m 1 de aer conține de două până la trei ori mai puțini vapori de apă decât este posibil la o anumită temperatură.

Pentru a măsura umiditatea relativă, se folosește un higrometru (din grecescul hygros - umed și metreco - măsoară).

Când este răcit, aerul saturat nu poate reține aceeași cantitate de vapori de apă se îngroașă (condensează), transformându-se în picături de ceață. Ceața poate fi observată vara într-o noapte senină și răcoroasă.

nori- aceasta este aceeași ceață, doar că se formează nu la suprafața pământului, ci la o anumită înălțime. Pe măsură ce aerul se ridică, se răcește și vaporii de apă din el se condensează. Picăturile mici de apă rezultate alcătuiesc norii.

Formarea norilor implică și particule în suspensie suspendat în troposferă.

Norii pot avea formă diferită, care depinde de condițiile formării lor (Tabelul 14).

Norii cei mai jos și cei mai grei sunt stratus. Sunt situate la o altitudine de 2 km de suprafața pământului. La o altitudine de 2 până la 8 km, pot fi observați nori cumuluși mai pitorești. Cei mai înalți și mai ușori nori sunt norii cirus. Sunt situate la o altitudine de 8 până la 18 km deasupra suprafeței pământului.

Familiile

Soiuri de nori

Aspect

A. Nori de sus - peste 6 km

I. Cirrus

Sub formă de fir, fibros, alb

II. Cirrocumulus

Straturi și creste de mici fulgi și bucle, albe

III. Cirrostratus

Voal albicios transparent

B. Nori de nivel mediu - peste 2 km

IV. Altocumulus

Straturi și creste de culoare albă și gri

V. Altostratificat

Voal neted de culoare gri lăptos

B. Nori joase - până la 2 km

VI. Nimbostratus

Strat solid gri, fără formă

VII. Stratocumulus

Straturi netransparente și creste de culoare gri

VIII. Stratificat

Voal gri netranslucid

D. Norii de dezvoltare verticală - de la nivelul inferior spre cel superior

IX. Cumulus

Cluburile și cupolele sunt albe strălucitoare, cu margini rupte în vânt

X. Cumulonimbus

Mase puternice în formă de cumulus de culoare plumb închisă

Protectie atmosferica

Principalele surse sunt întreprinderile industriale și mașinile. În orașele mari, problema poluării cu gaze pe principalele rute de transport este foarte acută. De aceea în multe marile orase lume, inclusiv la noi, introdus controlul mediului toxicitatea gazelor de evacuare a vehiculelor. Potrivit experților, fumul și praful din aer pot reduce la jumătate aportul de energie solară la suprafața pământului, ceea ce va duce la o schimbare a condițiilor naturale.

Astăzi, ca parte a articolului nostru, vom vorbi despre unul dintre cele mai importante straturi ale noastre corp ceresc, despre atmosfera Pământului și vom oferi răspunsuri la multe întrebări populare despre acest înveliș gazos.

Ce este atmosfera

Atmosfera este unul dintre straturile planetei noastre, care nu este altceva decât o înveliș gazos. Atmosfera noastră este menținută în loc datorită atracției pământului, datorită forțelor gravitaționale. Practic, atmosfera noastră este formată din oxigen, precum și din dioxid de carbon.

De ce se numește atmosfera armura Pământului?

Adesea, stratul de gaz al carcasei planetei noastre este numit convențional armura noastră invizibilă. Și răspunsul la întrebarea despre originea acestui nume este destul de simplu, deoarece atmosfera Pământului este protecția noastră de meteoriți și alte corpuri cosmice care pot cădea la suprafață. În plus, atmosfera ne protejează de razele de radiație emise de Soare. Ei nu sunt capabili să treacă prin stratul de gaz și să dăuneze umanității.

Meteoriții, după cum se știe, sunt capabili să cadă spre Pământ, dar mulți dintre ei pur și simplu iau foc și nu ajung la suprafață. Și dacă vorbim despre motivul pentru care un meteorit, care zboară prin atmosfera Pământului, devine fierbinte, atunci și aici răspunsul este extrem de simplu. Intrând în atmosferă, datorită vitezei foarte decente de cădere și datorită frecării create între atmosferă și corpul cosmic însuși, se încălzește și pur și simplu se aprinde.

De ce există atmosfera: cum a apărut?

Există și o întrebare, motiv pentru care atmosfera există deloc, de ce se rotește cu planeta noastră și nu scapă în spațiu. Și aici nu există nici secrete din mințile moderne ale umanității, răspunsul la această întrebare oamenii l-au primit deja cu mult timp în urmă.

Mai întâi trebuie să răspundem de ce atmosfera se rotește cu Pământul. Ideea este că aici intră din nou puterea. gravitația universală, gravitația, care menține atmosfera noastră în poziția în care se află. Cu toate acestea, ceea ce s-a spus mai sus este destul de potrivit ca răspuns la întrebarea de ce atmosfera Pământului nu scapă în spațiu.

De ce nu există hidrogen în atmosferă?

Este un fapt comun că aproape că nu există hidrogen în atmosfera noastră. Motivul pentru acest fenomen este că moleculele sale sunt foarte ușoare, se evaporă rapid în spațiu, iar cota sa în stratul atmosferic al Pământului este minimă.

- învelișul de aer al globului, care se rotește împreună cu Pământul. Limita superioară a atmosferei este trasată în mod convențional la altitudini de 150-200 km. Limita inferioară este suprafața Pământului.

Aerul atmosferic este un amestec de gaze. Majoritatea volumului său în stratul de suprafață al aerului reprezintă azot (78%) și oxigen (21%). În plus, aerul conține gaze inerte (argon, heliu, neon etc.), dioxid de carbon (0,03), vapori de apă și diverse particule solide (praf, funingine, cristale de sare).

Aerul este incolor, iar culoarea cerului se explică prin caracteristicile împrăștierii undelor luminoase.

Atmosfera este formata din mai multe straturi: troposfera, stratosfera, mezosfera si termosfera.

Stratul inferior al aerului se numește troposfera. La diferite latitudini puterea sa nu este aceeași. Troposfera urmează forma planetei și participă împreună cu Pământul la rotația axială. La ecuator, grosimea atmosferei variază de la 10 la 20 km. La ecuator este mai mare, iar la poli este mai mică. Troposfera se caracterizează prin densitatea maximă a aerului este concentrată în ea 4/5 din masa întregii atmosfere. Troposfera determină condițiile meteorologice: aici se formează diverse mase de aer, se formează nori și precipitații și are loc o mișcare intensă a aerului orizontal și vertical.

Deasupra troposferei, până la o altitudine de 50 km, se află stratosferă. Se caracterizează printr-o densitate mai mică a aerului și lipsește vaporii de apă. În partea inferioară a stratosferei la altitudini de aproximativ 25 km. există un „ecran de ozon” - un strat al atmosferei cu o concentrație mare de ozon care absoarbe radiații ultraviolete, fatal pentru organisme.

La o altitudine de 50 până la 80-90 km se extinde mezosferă. Odată cu creșterea altitudinii, temperatura scade cu un gradient vertical mediu de (0,25-0,3)°/100 m, iar densitatea aerului scade. Principalul proces energetic este transferul de căldură radiantă. Strălucirea atmosferei este cauzată de procese fotochimice complexe care implică radicali și molecule excitate vibrațional.

Termosferă situat la o altitudine de 80-90 până la 800 km. Densitatea aerului aici este minimă, iar gradul de ionizare a aerului este foarte mare. Temperatura se schimbă în funcție de activitatea Soarelui. Datorită numărului mare de particule încărcate, aici sunt observate aurore și furtuni magnetice.

Atmosfera este de mare importanță pentru natura Pământului. Fără oxigen, organismele vii nu pot respira. Stratul său de ozon protejează toate lucrurile vii de razele ultraviolete dăunătoare. Atmosfera netezește fluctuațiile de temperatură: suprafața Pământului nu se suprarăci noaptea și nu se supraîncălzește în timpul zilei. În straturile dense de aer atmosferic, înainte de a ajunge la suprafața planetei, meteoriții ard din spini.

Atmosfera interacționează cu toate straturile pământului. Cu ajutorul lui, căldura și umiditatea sunt schimbate între ocean și pământ. Fără atmosferă nu ar exista nori, precipitații sau vânturi.

Are un efect negativ semnificativ asupra atmosferei activitate economică persoană. Are loc poluarea aerului atmosferic, ceea ce duce la o creștere a concentrației de monoxid de carbon (CO 2). Și asta contribuie încălzire globală climatului și sporește efectul de seră. Stratul de ozon al Pământului este distrus din cauza deșeurilor industriale și a transportului.

Atmosfera are nevoie de protecție. În țările dezvoltate, se implementează un set de măsuri pentru a proteja aerul atmosferic de poluare.

Mai ai întrebări? Vrei să afli mai multe despre atmosferă?
Pentru a obține ajutor de la un tutor, înregistrați-vă.

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursă.

Atmosfera este învelișul gazos al planetei noastre, care se rotește împreună cu Pământul. Gazul din atmosferă se numește aer. Atmosfera este în contact cu hidrosfera și acoperă parțial litosfera. Dar limitele superioare sunt greu de determinat. Este convențional acceptat că atmosfera se extinde în sus pe aproximativ trei mii de kilometri. Acolo curge lin în spațiul fără aer.

Compoziția chimică a atmosferei Pământului

Formare compozitia chimica atmosfera a început în urmă cu aproximativ patru miliarde de ani. Inițial, atmosfera era formată doar din gaze ușoare - heliu și hidrogen. Potrivit oamenilor de știință, premisele inițiale pentru crearea unui înveliș de gaz în jurul Pământului au fost erupțiile vulcanice, care, împreună cu lava, au emis cantități uriașe de gaze. Ulterior, schimbul de gaze a început cu spațiile de apă, cu organismele vii și cu produsele activităților lor. Compoziția aerului s-a schimbat treptat și a fost fixată în forma sa modernă în urmă cu câteva milioane de ani.

Principalele componente ale atmosferei sunt azotul (aproximativ 79%) și oxigenul (20%). Procentul rămas (1%) este alcătuit din următoarele gaze: argon, neon, heliu, metan, dioxid de carbon, hidrogen, cripton, xenon, ozon, amoniac, dioxizi de sulf și azot, protoxid de azot și monoxid de carbon, care sunt incluse. în acest unu la sută.

În plus, aerul conține vapori de apă și particule (polen, praf, cristale de sare, impurități de aerosoli).

ÎN în ultima vreme Oamenii de știință notează nu o schimbare calitativă, ci o modificare cantitativă a unor ingrediente din aer. Iar motivul pentru aceasta este omul și activitățile sale. Numai în ultimii 100 de ani, nivelul de dioxid de carbon a crescut semnificativ! Aceasta este plină de multe probleme, dintre care cea mai globală este schimbările climatice.

Formarea vremii și a climei

Atmosfera joacă un rol esențial în modelarea climei și a vremii de pe Pământ. Multe depind de cantitatea de lumină solară, de natura suprafeței subiacente și de circulația atmosferică.

Să ne uităm la factorii în ordine.

1. Atmosfera transmite căldura razelor solare și absoarbe radiațiile nocive. Grecii antici știau că razele Soarelui cad pe diferite părți ale Pământului în unghiuri diferite. Cuvântul „climă” însuși tradus din greaca veche înseamnă „pantă”. Deci, la ecuator, razele soarelui cad aproape vertical, motiv pentru care aici este foarte cald. Cu cât este mai aproape de poli, cu atât unghiul de înclinare este mai mare. Și temperatura scade.

2. Din cauza încălzirii neuniforme a Pământului, în atmosferă se formează curenți de aer. Sunt clasificate în funcție de mărimea lor. Cele mai mici (zeci și sute de metri) sunt vânturile locale. Acesta este urmat de musoni și alizee, cicloni și anticicloni și zone frontale planetare.

Toate aceste mase de aer se misca constant. Unele dintre ele sunt destul de statice. De exemplu, vânturile alice care sufla din subtropicale spre ecuator. Mișcarea celorlalți depinde în mare măsură de presiunea atmosferică.

3. Presiunea atmosferică este un alt factor care influențează formarea climei. Aceasta este presiunea aerului pe suprafața pământului. După cum se știe, masele de aer se deplasează dintr-o zonă cu presiune atmosferică ridicată către o zonă în care această presiune este mai mică.

În total sunt alocate 7 zone. Ecuatorul este o zonă de joasă presiune. În plus, de ambele părți ale ecuatorului până la latitudinile treizeci există o zonă de înaltă presiune. De la 30° la 60° - presiune joasă din nou. Și de la 60° la poli este o zonă de înaltă presiune. Masele de aer circulă între aceste zone. Cei care vin de la mare la uscat aduc ploi și vreme rea, iar cei care sufla de pe continente aduc vreme senină și uscată. În locurile în care curenții de aer se ciocnesc, se formează zonele frontale atmosferice, care se caracterizează prin precipitații și vreme nefavorabilă, cu vânt.

Oamenii de știință au demonstrat că chiar și bunăstarea unei persoane depinde de presiunea atmosferică. Normal după standardele internaționale presiunea atmosferică- 760 mm Hg. coloană la o temperatură de 0°C. Acest indicator este calculat pentru acele suprafețe de teren care sunt aproape la nivel cu nivelul mării. Odată cu altitudinea presiunea scade. Prin urmare, de exemplu, pentru Sankt Petersburg 760 mm Hg. - asta e norma. Dar pentru Moscova, care se află mai sus, presiunea normală este de 748 mm Hg.

Presiunea se schimbă nu numai pe verticală, ci și pe orizontală. Acest lucru se simte mai ales în timpul trecerii cicloanelor.

Structura atmosferei

Atmosfera amintește de un tort stratificat. Și fiecare strat are propriile sale caracteristici.

. troposfera- stratul cel mai apropiat de Pământ. „Grosimea” acestui strat se modifică odată cu distanța de la ecuator. Deasupra ecuatorului, stratul se extinde în sus cu 16-18 km, în zonele temperate cu 10-12 km, la poli cu 8-10 km.

Aici sunt conținute 80% din masa totală de aer și 90% din vaporii de apă. Aici se formează nori, se ridică cicloni și anticicloni. Temperatura aerului depinde de altitudinea zonei. În medie, scade cu 0,65° C la fiecare 100 de metri.

. Tropopauza- stratul de tranziție al atmosferei. Înălțimea sa variază de la câteva sute de metri până la 1-2 km. Temperatura aerului vara este mai mare decât iarna. De exemplu, deasupra polilor iarna este -65° C. Iar deasupra ecuatorului este -70° C în orice moment al anului.

. Stratosferă- acesta este un strat a cărui limită superioară se află la o altitudine de 50-55 de kilometri. Turbulența aici este scăzută, conținutul de vapori de apă din aer este neglijabil. Dar există mult ozon. Concentrația sa maximă este la o altitudine de 20-25 km. În stratosferă, temperatura aerului începe să crească și ajunge la +0,8° C. Acest lucru se datorează faptului că stratul de ozon interacționează cu radiația ultravioletă.

. Stratopauza- un strat intermediar jos între stratosferă și mezosferă care îl urmează.

. Mezosfera- limita superioară a acestui strat este de 80-85 de kilometri. Aici au loc procese fotochimice complexe cu participare radicali liberi. Ei sunt cei care oferă acea strălucire albastră blândă a planetei noastre, care este văzută din spațiu.

Majoritatea cometelor și meteoriților ard în mezosferă.

. Mezopauza- următorul strat intermediar, temperatura aerului în care este de cel puțin -90°.

. Termosferă- limita inferioară începe la o altitudine de 80 - 90 km, iar limita superioară a stratului trece aproximativ la 800 km. Temperatura aerului crește. Poate varia de la +500° C la +1000° C. În timpul zilei, fluctuațiile de temperatură se ridică la sute de grade! Dar aerul de aici este atât de rarefiat încât să înțelegem termenul „temperatură” așa cum ne imaginăm că nu este adecvat aici.

. ionosferă- combina mezosfera, mezopauza si termosfera. Aerul de aici este format în principal din molecule de oxigen și azot, precum și din plasmă cvasi-neutră. razele solare La intrarea în ionosferă, moleculele de aer sunt puternic ionizate. În stratul inferior (până la 90 km) gradul de ionizare este scăzut. Cu cât este mai mare, cu atât ionizarea este mai mare. Deci, la o altitudine de 100-110 km, electronii sunt concentrați. Acest lucru ajută la reflectarea undelor radio scurte și medii.

Cel mai important strat al ionosferei este cel superior, care se află la o altitudine de 150-400 km. Particularitatea sa este că reflectă undele radio, iar acest lucru facilitează transmiterea semnalelor radio pe distanțe considerabile.

În ionosferă are loc un astfel de fenomen precum aurora.

. Exosfera- constă din atomi de oxigen, heliu și hidrogen. Gazul din acest strat este foarte rarefiat și atomii de hidrogen scapă adesea în spațiul cosmic. Prin urmare, acest strat este numit „zonă de dispersie”.

Primul om de știință care a sugerat că atmosfera noastră are greutate a fost italianul E. Torricelli. Ostap Bender, de exemplu, în romanul său „Vițelul de aur” a deplâns că fiecare persoană este presată de o coloană de aer care cântărește 14 kg! Dar marele intrigator s-a înșelat puțin. Un adult se confruntă cu o presiune de 13-15 tone! Dar nu simțim această greutate, deoarece presiunea atmosferică este echilibrată de presiunea internă a unei persoane. Greutatea atmosferei noastre este de 5.300.000.000.000.000 de tone. Cifra este colosală, deși este doar o milioneme din greutatea planetei noastre.

troposfera

Limita sa superioara se afla la o altitudine de 8-10 km in latitudini polare, 10-12 km in latitudinile temperate si 16-18 km in latitudini tropicale; mai scăzut iarna decât vara. Stratul principal inferior al atmosferei conține mai mult de 80% din masa totală a aerului atmosferic și aproximativ 90% din toți vaporii de apă prezenți în atmosferă. Turbulența și convecția sunt foarte dezvoltate în troposferă, apar norii și se dezvoltă cicloni și anticicloni. Temperatura scade odată cu creșterea altitudinii cu un gradient vertical mediu de 0,65°/100 m

Tropopauza

Stratul de tranziție de la troposferă la stratosferă, un strat al atmosferei în care scăderea temperaturii odată cu înălțimea încetează.

Stratosferă

Un strat al atmosferei situat la o altitudine de 11 până la 50 km. Caracterizat printr-o ușoară modificare a temperaturii în stratul de 11-25 km (stratul inferior al stratosferei) și o creștere a temperaturii în stratul de 25-40 km de la -56,5 la 0,8 ° C (stratul superior al stratosferei sau regiunea de inversare) . Atinsă o valoare de aproximativ 273 K (aproape 0 °C) la o altitudine de aproximativ 40 km, temperatura rămâne constantă până la o altitudine de aproximativ 55 km. Această regiune cu temperatură constantă se numește stratopauză și este granița dintre stratosferă și mezosferă.

Stratopauza

Stratul limită al atmosferei dintre stratosferă și mezosferă. În distribuția verticală a temperaturii există un maxim (aproximativ 0 °C).

Mezosfera

Mezosfera începe la o altitudine de 50 km și se extinde până la 80-90 km. Temperatura scade odată cu înălțimea cu un gradient vertical mediu de (0,25-0,3)°/100 m Procesul energetic principal este transferul de căldură radiantă. Procesele fotochimice complexe care implică radicali liberi, molecule excitate vibrațional etc. cauzează luminiscența atmosferică.

Mezopauza

Strat de tranziție între mezosferă și termosferă. Există un minim în distribuția verticală a temperaturii (aproximativ -90 °C).

Linia Karman

Înălțimea deasupra nivelului mării, care este acceptată în mod convențional ca graniță între atmosfera Pământului și spațiu. Linia Karman este situată la o altitudine de 100 km deasupra nivelului mării.

Limita atmosferei Pământului

Termosferă

Limita superioară este de aproximativ 800 km. Temperatura se ridică la altitudini de 200-300 km, unde atinge valori de ordinul a 1500 K, după care rămâne aproape constantă până la altitudini mari. Sub influența radiației solare ultraviolete și cu raze X și a radiației cosmice, are loc ionizarea aerului („aurore”) - principalele regiuni ale ionosferei se află în interiorul termosferei. La altitudini de peste 300 km predomină oxigenul atomic. Limita superioară a termosferei este determinată în mare măsură de activitatea curentă a Soarelui. În perioadele de activitate scăzută, are loc o scădere vizibilă a dimensiunii acestui strat.

Termopauza

Regiunea atmosferei adiacente termosferei. În această regiune, absorbția radiației solare este neglijabilă și temperatura nu se schimbă de fapt odată cu altitudinea.

Exosfera (sfera de împrăștiere)

Straturi atmosferice până la o altitudine de 120 km

Exosfera este o zonă de dispersie, partea exterioară a termosferei, situată peste 700 km. Gazul din exosferă este foarte rarefiat, iar de aici particulele sale se scurg în spațiul interplanetar (disipare).

Până la o altitudine de 100 km, atmosfera este un amestec omogen, bine amestecat de gaze. În straturile superioare, distribuția gazelor pe înălțime depinde de acestea greutăți moleculare, concentrația gazelor mai grele scade mai repede cu distanța de la suprafața Pământului. Datorită scăderii densității gazelor, temperatura scade de la 0 °C în stratosferă la −110 °C în mezosferă. Cu toate acestea energie cinetică particulele individuale la altitudini de 200-250 km corespund unei temperaturi de ~150 °C. Peste 200 km se observă fluctuații semnificative ale temperaturii și densității gazelor în timp și spațiu.

La o altitudine de aproximativ 2000-3500 km, exosfera se transformă treptat în așa-numitul vid din spațiul apropiat, care este umplut cu particule foarte rarefiate de gaz interplanetar, în principal atomi de hidrogen. Dar acest gaz reprezintă doar o parte din materia interplanetară. Cealaltă parte este formată din particule de praf de origine cometă și meteorică. Pe lângă particulele de praf extrem de rarefiate, în acest spațiu pătrunde radiațiile electromagnetice și corpusculare de origine solară și galactică.

Troposfera reprezintă aproximativ 80% din masa atmosferei, stratosfera - aproximativ 20%; masa mezosferei nu este mai mare de 0,3%, termosfera este mai mică de 0,05% din masa totală a atmosferei. Pe baza proprietăților electrice din atmosferă, se disting neutronosfera și ionosfera. În prezent se crede că atmosfera se extinde până la o altitudine de 2000-3000 km.

În funcție de compoziția gazului din atmosferă, se disting homosferă și heterosferă. Heterosfera este o zonă în care gravitația afectează separarea gazelor, deoarece amestecarea lor la o astfel de înălțime este neglijabilă. Aceasta implică o compoziție variabilă a heterosferei. Sub ea se află o parte bine amestecată, omogenă a atmosferei numită homosferă. Limita dintre aceste straturi se numește turbopauză, se află la o altitudine de aproximativ 120 km.