1. Интегральное исчисление функций одной переменной

2. Первообразная и неопределенный интеграл.

3. Свойства неопределенного интеграла.

4. Таблица интегралов

При изучении дифференцирования функций, ставилась задача − по дан-ной функции найти ее производную или дифференциал. Многие вопросы науки и техники приводят к постановке обратной задачи − для данной функ-ции f(x) найти такую функцию F(x), производная или дифференциал которой равны соответственно f(x) или f(x)dx .

Определение 1. Функция F(x) называется первообразной по отношению к функции f(x) на некотором промежутке (a, b), если на этом промежутке фун-к-ция F(x) дифференцируема и удовлетворяет уравнению

F (x) = f(x)

или, что то же самое, соотношению

dF(x) = f(x)dx.

Так, например, функция sin 5x - первообразная на любом промежутке по отношению к функции f (x ) = 5cos5x , так как (sin5x )′ = 5cos5x .

Легко проверить, что наличие одной первообразной обеспечивает наличие таких функций в бесконечном множестве. В самом деле, если F(x) - первообразная от функции f(x) , то

Ф(x) = F(x) + C ,

где С - любая постоянная, также первообразная, так как

Ф ′(х ) = (F (x ) + C )′ = F ′(x ) + 0 = f (x ).

На вопрос, как найти все первообразные данной функции, если известна одна из них, дает ответ следующая теорема.

Теорема 1 (о первообразных). Если F (x ) − какая-нибудь первообразная от функции f (x ) на интервале (a, b ), то все ее первообразные имеют вид F (x ) + С , где С - произвольная постоянная.

Геометрически y = F(x) + C означает, что гра-фик любой первообразной функции получается из графика функции y = F (x ) простым сдвигом его параллельно оси Оу на величину С (см. рисунок). В связи с тем, что одна и та же функция f (x ) имеет бесконечно много первообразных, возникает проб-лема выбора первообразной, которая решает ту или иную практическую задачу.

Известно, что производная от пути по времени равна скорости точки: S ′(t ) = V (t ), поэтому, если известен закон изменения скорости V(t) , путь движения точки есть первообразная от скорости точки, т. е. S (t ) = F (t ) + C .

Для нахождения закона изменения пути S(t) нужно использовать началь-ные условия, т. е. знать, чему равен пройденный путь S0 при t = t0 . Пусть при t = t0 имеем S = S0 . Тогда

S(t 0 ) = S 0 = F(t 0 ) + C. С = S 0 - F(t 0 ) и S(t) = F(t) + S 0 - F(t 0 ).

Определение 2. Если F(x) - некоторая первообразная от функции f(x), то выражение F(x) + C, где С - произвольная постоянная, называется неопреде-ленным интегралом и обозначается

f (x )dx = F (x ) + C ,


т. е. неопределенный интеграл от функции f(x) есть множество всех её перво-образных.

При этом функция f(x) называется подынтегральной , а произведение f(x)dx - подынтегральным выражением ; F(x) - одна из первообразных; х - пе-ременная интегрирования . Процесс отыскания первообразной называется интегрированием.

П р и м е р 1. Найти неопределенные интегралы:

Теорема 2 (существование неопределенного интеграла). Если функция f(х) непрерывна на (a, b) , то существует первообразная, а значит, и интеграл ∫f (x )dx.

Свойства неопределенных интегралов:

1. (∫f (x )dx )′ = f (x ) , т. е. производная от неопределенного интеграла равна подынтегральной функции.

2. d (∫f (x )dx ) = f (x )dx , т. е. дифференциал от неопределенного интеграла равен подынтегральному выражению.

3. ∫dF (x ) = F (x ) + C .

4. ∫(C 1 f 1(x ) + C 2 f 2 (x ))dx = C 1∫f 1(x )dx + C 2∫f 2(x )dx − свойство линей-ности ; С1, С2 - постоянные.

5. Если ∫f (x )dx = F (x ) + C , то

Первые три свойства вытекают из определения неопределенного интег-рала. Свойств 4 и 5 получаем дифференцированием левых и правых частей уравнений по х , используя свойство 1 интегралов и свойства производных.

П р и м е р 2 . Найти неопределенный интеграл: а) ∫(e x + cos5x )dx .

Решение. Используя свойства 4 и 5, находим:

Приведем таблицу основных интегралов, которая в высшей математике играет такую же роль, как таблица умножения в арифметике.

Основные методы интегрирования

Существует три основных метода интегрирования .

1. Непосредственное интегрирование − вычисление интегралов с по-мощью таблицы интегралов и основных свойств неопределенных интегралов.

П р и м е р 3 . Вычислить интеграл: ∫tg 2 xdx.

2. Метод подстановки . Во многих случаях введение новой переменной интегрирования позволяет свести вычисление данного интеграла к нахож-де-нию табличного. Этот метод еще называют методом замены переменной .

Теорема 3. Пусть функция x = φ(t) определена, непрерывна и диффе-ренцируема на некотором промежутке Т и пусть Х - множество значений этой функции, на нем, т. е. на Т определена сложная функция f(φ(t)). Тогда если ∫f(x)dx = F(x) + C , то

f(x)dx =∫f(φ(t)) φ (t)dt . (1)

Формула (1) называется формулой замены переменной в неопределенном интеграле.

Замечание. После вычисления интеграла ∫f(φ(t)) φ (t)dt нужно пе-рей-ти назад к переменной х.

П р и м е р 4. Найти интеграл: ∫cos 3 x sinxdx.

а) Заменим sinxdx на (−d cos x ), т. е. внесем функцию cos x под знак диф-ференциала. Получим

3. Метод интегрирования по частям

Теорема 4. Пусть функции u(x) и v(x) определены и дифференцируе-мы на некотором промежутке Х и пусть u (x)v(x) имеет первообразную на этом промежутке, т. е. существует интеграл ∫u ′(x )v (x )dx.

Тогда на этом промежут-ке имеет первообразную и функция u(x)v (x) и справедлива формула:

u (x )v ′(x )dx = u (x )v (x ) −∫v (x )u ′(x )dx (2)

udv = uv −∫vdu . (2′)

Формулы (2) и (2′) называются формулами интегрирования по частям в неопределенном интеграле.

Методом интегрирования по частям вычисляются интегралы от следую-щих функций: P (x )arcsin(ax ), P (x )arccos(ax ), P (x )arctg(ax ), P (x )arcctg(ax ), P (x )ln x , P (x )e kx , P (x )sin kx , P (x )cos kx , здесь P(x) - многочлен; e ax cosbx , e ax sin bx .

Конечно, эти функции не исчерпывают всех интегралов, которые вычи-сляются с помощью метода интегрирования по частям.

П р и м е р 6. Найти интеграл: ∫arctg 3xdx .

Решение. Положим u = arctg 3x ; dv = dx . Тогда

По формуле (2) имеем

Этот метод сводится к интегрированию дифференциального уравнения изогнутой оси балки (9.1) при известном законе изменения изгибающих моментов М (х). Считая жесткость балки при изгибе постоянной (EJ z = const) и последовательно интегрируя уравнение (9.1), получим

В выражениях (9.5) и в дальнейшем для упрощения записи опущены индексы у моментов инерции и изгибающих моментов.

Выражения (9.5) позволяют получить аналитические законы изменения прогибов и углов поворота в балке. Входящие в (9.5) постоянные интегрирования С 1 и С 2 подлежат определению из кинематических граничных условий и условий сопряжения участков балки.

Кинематические граничные условия отражают характер закрепления (опирания) балки и ставятся относительно прогибов и углов поворота. Например, для шарнирно опертой балки (рис. 9.4) граничные условия характеризуют отсутствие прогибов на опорах: х = 0, х = /, v = 0. Для консольной балки (рис. 9.5) граничные условия характеризуют равенство нулю прогиба и угла поворота в жесткой заделке: х = 0, v = 0; ср = 0.

Условия сопряжения ставятся на границах участков с различными законами изменения изгибающих моментов. При отсутствии промежуточных шарниров и так называемых параллелограммных механизмов (ползунов) условия сопряжения заключаются в равенстве прогибов и углов поворота в сечениях слева и справа от границы участков, то есть они характеризуют непрерывность и гладкость изогнутой оси балки. Например, для балки на рис. 9.4 можно записать: х = а, и = и

При наличии п участков с различными законами изменения изгибающих моментов выражение для прогиба будет содержать 2п постоянных интегрирования. Используя граничные условия и условия сопряжения участков, можно получить систему 2п линейных алгебраических уравнений относительно этих постоянных. После определения всех постоянных интегрирования будут установлены законы изменения u(x) и ср(х) в пределах каждого участка балки. Рассмотрим примеры определения прогибов и углов поворота в балках с помощью метода непосредственного интегрирования.

Пример 9.1. Определим аналитические выражения для и(лс) и cp(x) в консольной балке, нагруженной равномерно распределенной нагрузкой (рис. 9.6), и вычислим значения этих величин на свободном конце.

Изгибающий момент в балке на всем ее протяжении изменяется по закону квадратной параболы:

Подставим это выражение в решение (9.5) и проинтегрируем его:

Использовав граничные условия, определим постоянные интегрирования:

Запишем окончательные выражения для прогибов и углов поворота в балке и определим значения этих величин на свободном конце:

Пример 9.2. Для шарнирно опертой балки, нагруженной на конце сосредоточенной силой (рис. 9.7), определим выражения для у(х) и (р(х) и вычислим значения этих величин в характерных сечениях.

Эпюра М приведена на рис. 9.7. Изгибающие моменты имеют различные законы изменения на первом и втором участках балки. Интегрируем дифференциальное уравнение изогнутой оси в пределах каждого участка.

Первый участок (0 2а):

Второй участок (2а

Для определения четырех постоянных интегрирования С, С 2 , D x и D 2 ставим граничные условия и условия сопряжения участков:

Из условия сопряжения участков получаем равенство постоянных интегрирования на первом и втором участках: С { = D v С 2 = D T Использовав граничные условия, находим значения постоянных:

Запишем окончательные выражения для и(х) и ср(х) в пределах каждого участка:

В этих выражениях вертикальная черта с цифрой внизу соответствует границе каждого участка. В пределах первого участка v и ср определяются функциями, стоящими до вертикальной черты с цифрой 1, а в пределах второго участка - до вертикальной черты с цифрой 2, то есть всеми функциями.

Вычислим v и (р в характерных сечениях балки:

В пределах первого участка знак угла поворота изменяется на противоположный. Установим положение сечения, где угол поворота обращается в нуль:

В сечении х =x Q прогиб балки имеет экстремум. Вычисляем его значение:

Для сравнения определим величину прогиба балки в середине пролета:

Можно отметить, что экстремальный прогиб весьма незначительно (на 2,6%) отличается от прогиба в середине пролета.

Выполним числовой расчет при Р= 20 кН и а = 1,6 м. Подберем сечение балки в виде стального прокатного двутавра, приняв коэффициент надежности по нагрузке у^= 1,2, коэффициент условий работы у с = 1, расчетное сопротивление материала R = 210 МПа = = 21 кН/см 2 и модуль упругости стали Е- 2,1 10 4 кН/см 2 .

Принимаем 120, W z = 184 см 3 , J = 1840 см 4 .

Вычислим наибольшие значения угла поворота и прогиба в балке. Согласно СНиП расчет производим на действие нормативных нагрузок.

Из рассмотренного примера видно, что при наличии в балке нескольких участков с различными законами изменения изгибающих моментов метод непосредственного интегрирования становится громоздким и неудобным.

Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.

В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.

Метод непосредственного интегрирования

Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.

Пример 1

Вычислите множество первообразных функции f (x) = 2 x + 3 2 · 5 x + 4 3 .

Решение

Для начала изменим вид функции на f (x) = 2 x + 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 .

Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:

∫ f (x) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x

Выводим за знак интеграла числовой коэффициент:

∫ f (x) d x = ∫ 2 x d x + ∫ 3 2 (5 x + 4) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ (5 x + 4) 1 3 d x

Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1

Чтобы найти второй интеграл, потребуется таблица первообразных для степенной функции ∫ x p · d x = x p + 1 p + 1 + C , а также правило ∫ f k · x + b d x = 1 k · F (k · x + b) + C .

Следовательно, ∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

У нас получилось следующее:

∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

причем C = C 1 + 3 2 C 2

Ответ: ∫ f (x) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.

Метод подстановки

Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.

Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.

Пример 2

Вычислите неопределенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Добавим еще одну переменную z = 2 x - 9 . Теперь нам нужно выразить x через z:

z 2 = 2 x - 9 ⇒ x = z 2 + 9 2 ⇒ d x = d z 2 + 9 2 = z 2 + 9 2 " d z = 1 2 · z d z = z d z

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9

Берем таблицу первообразных и узнаем, что 2 ∫ d z z 2 + 9 = 2 3 a r c t g z 3 + C .

Теперь нам нужно вернуться к переменной x и получить ответ:

2 3 a r c t g z 3 + C = 2 3 a r c t g 2 x - 9 3 + C

Ответ: ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Если нам приходится интегрировать функции с иррациональностью вида x m (a + b x n) p , где значения m , n , p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.

Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.

Этот метод объясняет правило интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C .

Добавляем еще одну переменную z = k · x + b . У нас получается следующее:

x = z k - b k ⇒ d x = d z k - b k = z k - b k " d z = d z k

Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:

∫ f (k · x + b) d x = ∫ f (z) · d z k = 1 k · ∫ f (z) d z = = 1 k · F z + C 1 = F (z) k + C 1 k

Если же мы примем C 1 k = C и вернемся к исходной переменной x , то у нас получится:

F (z) k + C 1 k = 1 k · F k x + b + C

Метод подведения под знак дифференциала

Это метод основывается на преобразовании подынтегрального выражения в функцию вида f (g (x)) d (g (x)) . После этого мы выполняем подстановку, вводя новую переменную z = g (x) , находим для нее первообразную и возвращаемся к исходной переменной.

∫ f (g (x)) d (g (x)) = g (x) = z = ∫ f (z) d (z) = = F (z) + C = z = g (x) = F (g (x)) + C

Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.

Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.

Пример 3

Вычислите неопределенный интеграл ∫ c t g x d x .

Решение

Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.

c t g x d x = cos s d x sin x

Смотрим в таблицу производных и видим, что числитель можно подвести под знак дифференциала cos x · d x = d (sin x) , значит:

c t g x d x = cos x d x sin x = d sin x sin x , т.е. ∫ c t g x d x = ∫ d sin x sin x .

Допустим, что sin x = z , в таком случае ∫ d sin x sin x = ∫ d z z . Согласно таблице первообразных, ∫ d z z = ln z + C . Теперь вернемся к исходной переменной ∫ d z z = ln z + C = ln sin x + C .

Все решение в кратком виде можно записать так:

∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C

Ответ: ∫ с t g x d x = ln sin x + C

Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.

Метод интегрирования по частям

Этот метод основывается на преобразовании подынтегрального выражения в произведение вида f (x) d x = u (x) · v " x d x = u (x) · d (v (x)) , после чего применяется формула ∫ u (x) · d (v (x)) = u (x) · v (x) - ∫ v (x) · d u (x) . Это очень удобный и распространенный метод решения. Иногда частичное интегрирование в одной задаче приходится применять несколько раз до получения нужного результата.

Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.

Пример 4

Вычислите неопределенный интеграл ∫ a r c t g (2 x) d x .

Решение

Допустим, что u (x) = a r c t g (2 x) , d (v (x)) = d x , в таком случае:

d (u (x)) = u " (x) d x = a r c t g (2 x) " d x = 2 d x 1 + 4 x 2 v (x) = ∫ d (v (x)) = ∫ d x = x

Когда мы вычисляем значение функции v (x) , прибавлять постоянную произвольную С не следует.

∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2

Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.

Поскольку ∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 , тогда 2 x d x = 1 4 d (1 + 4 x 2) .

∫ a r c t g (2 x) d x = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C 1 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C

Ответ: ∫ a r c t g (2 x) d x = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C .

Главная сложность применения такого метода – это необходимость выбирать, какую часть брать за дифференциал, а какую – за функцию u (x) . В статье, посвященной методу интегрирования по частям, даны некоторые советы по этому вопросу, с которыми следует ознакомиться.

Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.

Если мы интегрируем степенное выражение вида sin 7 x · d x или d x (x 2 + a 2) 8 , то нам будут полезны рекуррентные формулы, которые могут постепенно понижать степень. Они выводятся с помощью последовательного многократного интегрирования по частям. Советуем прочитать статью «Интегрирование с помощью рекуррентных формул.

Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поскольку сейчас речь пойдет только о неопределенном интеграле, то для сокращения термин «неопределенный» будем опускать.

Для того чтобы научиться вычислять интегралы (или, как говорят, интегрировать функции), нужно, прежде всего, выучить таблицу интегралов:

Таблица1. Таблица интегралов

2.
(
), u >0.

2a.
(α=0);

2б.
(α=1);

2в.
(α=).

3.

3а.

4.

5.

5а)

6а.

7.

7а.

8.

9.

10.

10а.

11.

11а.

12.

13.

13а.

Кроме того, потребуется умение вычислять производную от заданной функции, а значит, нужно вспомнить правила дифференцирования и таблицу производных основных элементарных функций:

Таблица 2. Таблица производных и правила дифференцирования:


6.а.

(sin и ) = cos и и

(cos u ) = – sin и и

А еще нам потребуется умение находить дифференциал функции. Напомним, что дифференциал функции
находят по формуле
, т.е. дифференциал функции равен произведению производной этой функции на дифференциал её аргумента . Полезно держать в памяти и следующие известные соотношения:

Таблица 3. Таблица дифференциалов

1.
(b = Const )

2.
(
)

3.

4.

5.
(b = Const )

6.

7.

8.

9.

10.

11.

12.

14.

15.

16.

17.

Причем использовать эти формулы можно, как читая их слева направо, так и справа налево.

Рассмотрим последовательно три основных приема вычисления интеграла. Первый из них называют методом непосредственного интегрирования. Оноснован на использовании свойств неопределенного интеграла, включает два основных приема: разложение интеграла на алгебраическую сумму более простых и подведение под знак дифференциала , причем эти приемы могут быть использованы как самостоятельно, так и в совокупности.

А) Рассмотрим разложение на алгебраическую сумму – этот прием предполагает использование тождественных преобразований подынтегральной функции и свойств линейности неопределенного интеграла:
и .

Пример 1. Найти интегралы:

а)
;
б)
;

в)
г)

д)
.

Решение.

а) Преобразуем подынтегральную функцию, разделив почленно числитель на знаменатель:

Здесь использовано свойство степеней:
.

б) Сначала преобразуем числитель дроби, затем разделим почленно числитель на знаменатель:

Здесь также использовано свойство степеней:
.

Здесь использовано свойство:
,
.

.

Здесь использованы формулы 2 и 5 таблицы 1.

Пример 2. Найти интегралы:

а)
; б)
;

в)
г)

д)
.

Решение.

а) Преобразуем подынтегральную функцию, используя тригонометрическое тождество :

.

Здесь вновь использовано почленное деление числителя на знаменатель и формулы 8 и 9 таблицы 1.

б) Аналогично преобразуем, используя тождество
:


.

в) Сначала разделим почленно числитель на знаменатель и вынесем за знак интеграла константы, затем используем тригонометрическое тождество
:

г) Применим формулу понижения степени:

,

д) Используя тригонометрические тождества, преобразуем:

Б) Рассмотрим прием интегрирования, который называют подведением под знак дифференциала . В основе этого приема лежит свойство инвариантности неопределенного интеграла:

если
, то для любой дифференцируемой функции и = и (х ) имеет место:
.

Это свойство позволяет значительно расширить таблицу простейших интегралов, так как в силу этого свойства формулы таблицы 1 справедливы не только для независимой переменной и , но и в случае, когда и – дифференцируемая функция какой-либо другой переменной.

Например,
, но и
, и
, и
.

Или
и
, и
.

Суть метода заключается в выделении в заданном подынтегральном выражении дифференциала некоторой функции так, чтобы этот выделенный дифференциал вместе с остальным выражением составляли табличную формула относительно этой функции. В случае необходимости при таком преобразовании можно соответствующим образом добавлять константы. Например:

(в последнем примере записано ln(3 + x 2) вместо ln|3 + x 2 | , так как выражение 3 + x 2 всегда положительно).

Пример 3. Найти интегралы:

а)
; б)
; в)
;

г)
; д)
; е)
;

ж)
; з)
.

Решение.

а) .

Здесь использованы формулы 2а, 5а и 7а таблицы 1, две последние из которых получены как раз путем подведения под знак дифференциала:

Интегрировать функции вида
приходится очень часто в рамках вычисления интегралов от более сложных функция. Чтобы каждый раз не повторять описанные выше действия, рекомендуем запомнить соответствующие формулы, приведённые в таблице 1.

.

Здесь использована формула 3 таблицы 1.

в) Аналогично, учитывая что , преобразуем:

.

Здесь использована формула 2в таблицы 1.

г)

.

д) ;

е)

.

ж) ;

з)


.

Пример 4. Найти интегралы:

а)
б)

в)
.

Решение.

а) Преобразуем:

Здесь так же использована формула 3 таблицы 1.

б) Используем формулу понижения степени
:

Здесь использованы формулы 2а и 7а таблицы 1.

Здесь наряду с формулами 2 и 8 таблицы 1 использованы и формулы таблицы 3:
,
.

Пример 5. Найти интегралы:

а)
; б)

в)
; г)
.

Решение.

а) Произведение
можно дополнить (см. формулы 4 и 5 таблицы 3) до дифференциала функции
, где а и b – любые константы,
. Действительно, , откуда
.

Тогда имеем:

.

б) Используя формулу 6 таблицы 3, имеем
, а также
, значит, присутствие в подынтегральном выражении произведения
означает подсказку: под знак дифференциала нужно внести выражение
. Поэтому получаем

в) Так же как в пункте б), произведение
можно дополнить до дифференциала функции
. Тогда получим:

.

г) Сначала воспользуемся свойствами линейности интеграла:

Пример 6. Найти интегралы:

а)
; б)
;

в)
; г)
.

Решение.

а) Учитывая, что
(формула 9 таблицы 3), преобразуем:

б) Используя формулу 12 таблицы 3, получим

в) Учитывая формулу 11 таблицы 3, преобразуем

г) Используя формулу 16 таблицы 3, получим:

.

Пример 7. Найти интегралы:

а)
; б)
;

в)
; г)
.

Решение.

а) Все представленные в этом примере интегралы имеют общую особенность : подынтегральная функция содержит квадратный трехчлен. Поэтому и способ вычисления этих интегралов будет основан на одном и том же преобразовании – выделении полного квадрата в этом квадратном трехчлене.

.

б)

.

в)

г)

Прием подведения под знак дифференциала является устной реализацией более общего приема вычисления интеграла, называемого методом подстановки или заменой переменной. Действительно, каждый раз, подбирая подходящую формулу таблицы 1 к полученной в результате подведения под знак дифференциала функции, мы мысленно заменяли буквой и функцию, внесенную под знак дифференциала. Поэтому, если интегрирование путем подведения под знак дифференциала не очень получается, можно непосредственно делать замену переменной. Подробнее об этом – в следующем пункте.

Поскольку сейчас речь пойдет только о неопределенном интеграле, то для сокращения термин «неопределенный» будем опускать.

Для того чтобы научиться вычислять интегралы (или, как говорят, интегрировать функции), нужно, прежде всего, выучить таблицу интегралов:

Таблица1. Таблица интегралов

2.
(
), u >0.

2a.
(α=0);

2б.
(α=1);

2в.
(α=).

3.

3а.

4.

5.

5а)

6а.

7.

7а.

8.

9.

10.

10а.

11.

11а.

12.

13.

13а.

Кроме того, потребуется умение вычислять производную от заданной функции, а значит, нужно вспомнить правила дифференцирования и таблицу производных основных элементарных функций:

Таблица 2. Таблица производных и правила дифференцирования:


6.а.

(sin и ) = cos и и

(cos u ) = – sin и и

А еще нам потребуется умение находить дифференциал функции. Напомним, что дифференциал функции
находят по формуле
, т.е. дифференциал функции равен произведению производной этой функции на дифференциал её аргумента . Полезно держать в памяти и следующие известные соотношения:

Таблица 3. Таблица дифференциалов

1.
(b = Const )

2.
(
)

3.

4.

5.
(b = Const )

6.

7.

8.

9.

10.

11.

12.

14.

15.

16.

17.

Причем использовать эти формулы можно, как читая их слева направо, так и справа налево.

Рассмотрим последовательно три основных приема вычисления интеграла. Первый из них называют методом непосредственного интегрирования. Оноснован на использовании свойств неопределенного интеграла, включает два основных приема: разложение интеграла на алгебраическую сумму более простых и подведение под знак дифференциала , причем эти приемы могут быть использованы как самостоятельно, так и в совокупности.

А) Рассмотрим разложение на алгебраическую сумму – этот прием предполагает использование тождественных преобразований подынтегральной функции и свойств линейности неопределенного интеграла:
и .

Пример 1. Найти интегралы:

а)
;
б)
;

в)
г)

д)
.

Решение.

а) Преобразуем подынтегральную функцию, разделив почленно числитель на знаменатель:

Здесь использовано свойство степеней:
.

б) Сначала преобразуем числитель дроби, затем разделим почленно числитель на знаменатель:

Здесь также использовано свойство степеней:
.

Здесь использовано свойство:
,
.

.

Здесь использованы формулы 2 и 5 таблицы 1.

Пример 2. Найти интегралы:

а)
; б)
;

в)
г)

д)
.

Решение.

а) Преобразуем подынтегральную функцию, используя тригонометрическое тождество :

.

Здесь вновь использовано почленное деление числителя на знаменатель и формулы 8 и 9 таблицы 1.

б) Аналогично преобразуем, используя тождество
:


.

в) Сначала разделим почленно числитель на знаменатель и вынесем за знак интеграла константы, затем используем тригонометрическое тождество
:

г) Применим формулу понижения степени:

,

д) Используя тригонометрические тождества, преобразуем:

Б) Рассмотрим прием интегрирования, который называют подведением под знак дифференциала . В основе этого приема лежит свойство инвариантности неопределенного интеграла:

если
, то для любой дифференцируемой функции и = и (х ) имеет место:
.

Это свойство позволяет значительно расширить таблицу простейших интегралов, так как в силу этого свойства формулы таблицы 1 справедливы не только для независимой переменной и , но и в случае, когда и – дифференцируемая функция какой-либо другой переменной.

Например,
, но и
, и
, и
.

Или
и
, и
.

Суть метода заключается в выделении в заданном подынтегральном выражении дифференциала некоторой функции так, чтобы этот выделенный дифференциал вместе с остальным выражением составляли табличную формула относительно этой функции. В случае необходимости при таком преобразовании можно соответствующим образом добавлять константы. Например:

(в последнем примере записано ln(3 + x 2) вместо ln|3 + x 2 | , так как выражение 3 + x 2 всегда положительно).

Пример 3. Найти интегралы:

а)
; б)
; в)
;

г)
; д)
; е)
;

ж)
; з)
.

Решение.

а) .

Здесь использованы формулы 2а, 5а и 7а таблицы 1, две последние из которых получены как раз путем подведения под знак дифференциала:

Интегрировать функции вида
приходится очень часто в рамках вычисления интегралов от более сложных функция. Чтобы каждый раз не повторять описанные выше действия, рекомендуем запомнить соответствующие формулы, приведённые в таблице 1.

.

Здесь использована формула 3 таблицы 1.

в) Аналогично, учитывая что , преобразуем:

.

Здесь использована формула 2в таблицы 1.

г)

.

д) ;

е)

.

ж) ;

з)


.

Пример 4. Найти интегралы:

а)
б)

в)
.

Решение.

а) Преобразуем:

Здесь так же использована формула 3 таблицы 1.

б) Используем формулу понижения степени
:

Здесь использованы формулы 2а и 7а таблицы 1.

Здесь наряду с формулами 2 и 8 таблицы 1 использованы и формулы таблицы 3:
,
.

Пример 5. Найти интегралы:

а)
; б)

в)
; г)
.

Решение.

а) Произведение
можно дополнить (см. формулы 4 и 5 таблицы 3) до дифференциала функции
, где а и b – любые константы,
. Действительно, , откуда
.

Тогда имеем:

.

б) Используя формулу 6 таблицы 3, имеем
, а также
, значит, присутствие в подынтегральном выражении произведения
означает подсказку: под знак дифференциала нужно внести выражение
. Поэтому получаем

в) Так же как в пункте б), произведение
можно дополнить до дифференциала функции
. Тогда получим:

.

г) Сначала воспользуемся свойствами линейности интеграла:

Пример 6. Найти интегралы:

а)
; б)
;

в)
; г)
.

Решение.

а) Учитывая, что
(формула 9 таблицы 3), преобразуем:

б) Используя формулу 12 таблицы 3, получим

в) Учитывая формулу 11 таблицы 3, преобразуем

г) Используя формулу 16 таблицы 3, получим:

.

Пример 7. Найти интегралы:

а)
; б)
;

в)
; г)
.

Решение.

а) Все представленные в этом примере интегралы имеют общую особенность : подынтегральная функция содержит квадратный трехчлен. Поэтому и способ вычисления этих интегралов будет основан на одном и том же преобразовании – выделении полного квадрата в этом квадратном трехчлене.

.

б)

.

в)

г)

Прием подведения под знак дифференциала является устной реализацией более общего приема вычисления интеграла, называемого методом подстановки или заменой переменной. Действительно, каждый раз, подбирая подходящую формулу таблицы 1 к полученной в результате подведения под знак дифференциала функции, мы мысленно заменяли буквой и функцию, внесенную под знак дифференциала. Поэтому, если интегрирование путем подведения под знак дифференциала не очень получается, можно непосредственно делать замену переменной. Подробнее об этом – в следующем пункте.