Векторная алгебра

Определение:

Вектор – это направленный отрезок в плоскости или в пространстве.

Характеристики:

1) длина вектора

Определение:

Два вектора называются коллинеарными, если они лежат на параллельных прямых.

Определение:

Два коллинеарных вектора называются сонаправленными, если их направления совпадают () В противном случае они называются противоположно направленными (↓).

Определение:

Два вектора равны между собой, если они сонаправлены и имеют одинаковую длину.

Например,

Операции:

1. Умножение вектора на число

Если
, то

если < 0

У нулевого вектора направление произвольно

Свойства умножения на число

2. Сложение векторов

Правило параллелограмма:

Свойства сложения:

- такие векторы называются противоположными друг другу. Легко видеть, что

Совместные свойства:

Определение:

Углом между двумя векторами называется угол, который получается если эти векторы отложить от одной точки, 0    

3. Скалярное произведение векторов.

, где - угол между векторами

Свойства скалярного произведения векторов:

1) (равенства имеют место в случае противоположной направленности и сонаправленности векторов соответственно)

3)

Если
, то знак произведения положительный, если ↓то отрицательный

)

6) , то есть
, или какой-либо из векторов равен нулю

7)

Применение векторов

1.

MN – средняя линия

Доказать, что


Доказательство:

, вычтем из обеих частей вектор
:

2.

Доказать, что диагонали ромба перпендикулярны


Доказательство:

Найти:

Решение:

Разложение векторов по базисам.

Определение:

Линейной комбинацией векторов (ЛКВ) называется сумма вида

(ЛКВ)

где 1 , 2 , … s – произвольный набор чисел

Определение:

ЛКВ называется нетривиальной, если все i = 0, в противном случае она называется нетривиальной.

Следствие:

В нетривиальной ЛКВ есть хотя бы один ненулевой коэффициент к 0

Определение:

Система векторов
называется линейно независимой (ЛНЗ), если () = 0 все i 0,

то есть только тривиальная её ЛК равна нулю.

Следствие:

Нетривиальная ЛК линейно независимых векторов отлична от нуля

Примеры:

1)
- ЛНЗ

2) Пусть и лежат в одной плоскости, тогда
- ЛНЗ
, неколлинеарны

3) Пусть , , не принадлежат одной плоскости, тогда они образуют ЛНЗ систему векторов

Теорема:

Если система векторов линейно независима, то хотя бы один из них есть линейная комбинация остальных.

Доказательство:

Пусть () = 0 и не все I равны нулю. Не теряя общности, пусть s 0. Тогда
, а это и есть линейная комбинация.

Пусть

Тогда , то есть ЛЗ.

Теорема:

Любые 3 вектора на плоскости линейно зависимы.

Доказательство:

Пусть даны вектора
, возможны случаи:

1)

2) неколлинеарен

Выразим через и :
, откуда
- нетривиальная ЛК.

Теорема:

Пусть
- ЛЗ

Тогда любая «более широкая» система - ЛЗ

Доказательство:

Так как - ЛЗ, то существует хотя бы одно i 0, причем () = 0

Тогда и () = 0

Определение:

Система линейно независимых векторов называется максимальной, если при присоединении к ней любого другого вектора она становится линейно зависимой.

Определение:

Размерностью пространства (плоскости) называется число векторов в максимальной линейно независимой системе векторов.

Определение:

Базисом называется любая упорядоченная максимальная линейно независимая система векторов.

Определение:

Базис называется нормированным, если входящие в него векторы имеют длину, равную единице.

Определение:

Базис называется ортогональным, если все его элементы (векторы) попарно перпендикулярны.

Теорема:

Система ортогональных векторов всегда линейно независима (если там нет нулевых векторов).

Доказательство:

Пусть - система ортогональных векторов (ненулевых), то есть
. Предположим, , умножим эту ЛК скалярно на вектор :

Первая скобка отлична от нуля (квадрат длины вектора), а все остальные скобки равны нулю по условию. Тогда 1 = 0. Аналогично для 2 s

Теорема:

Пусть М = - базис. Тогда любой вектор представим в виде:

где коэффициенты 2 s определяются однозначно (это координаты вектора относительно базиса М).

Доказательство:

1)
=
- ЛЗ (по условию базиса)

тогда - нетривиальна

а) 0 = 0 что невозможно, так как получится, что М – ЛЗ

б) 0 0

разделим на 0

т.е. есть ЛК

2) Докажем от противного. Пусть - другое представление вектора (т. е. хотя бы одна пара
). Вычтем формулы друг из друга:

- ЛК нетривиальна.

Но по условию - базис противоречие, то есть разложение единственно.

Вывод:

Всякий базис М определяет взаимно однозначное соответствие между векторами и их координатами относительно базиса М.

Обозначения:

М = - произвольный вектор

Тогда

Определение

Скалярная величина - величина, которая может быть охарактеризована числом. Например, длина, площадь , масса, температура и т.д.

Вектором называется направленный отрезок $\overline{A B}$; точка $A$ - начало, точка $B$ - конец вектора (рис. 1).

Вектор обозначается либо двумя большими буквами - своим началом и концом: $\overline{A B}$ либо одной малой буквой: $\overline{a}$.

Определение

Если начало и конец вектора совпадают, то такой вектор называется нулевым . Чаще всего нулевой вектор обозначается как $\overline{0}$.

Векторы называются коллинеарными , если они лежат либо на одной прямой, либо на параллельных прямых (рис. 2).

Определение

Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются сонаправленными , если их направления совпадают: $\overline{a} \uparrow \uparrow \overline{b}$ (рис. 3, а). Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются противоположно направленными , если их направления противоположны: $\overline{a} \uparrow \downarrow \overline{b}$ (рис. 3, б).

Определение

Векторы называются компланарными , если они параллельны одной плоскости или лежат в одной плоскости (рис. 4).

Два вектора всегда компланарны.

Определение

Длиной (модулем) вектора $\overline{A B}$ называется расстояние между его началом и концом: $|\overline{A B}|$

Подробная теория про длину вектора по ссылке .

Длина нулевого вектора равна нулю.

Определение

Вектор, длина которого равна единице, называется единичным вектором или ортом .

Векторы называются равными , если они лежат на одной или параллельных прямых; их направления совпадают и длины равны.

Иначе говоря, два вектора равны , если они коллинеарны, сонаправлены и имеют равные длины:

$\overline{a}=\overline{b}$ , если $\overline{a} \uparrow \uparrow \overline{b},|\overline{a}|=|\overline{b}|$

В произвольной точке $M$ пространства можно построить единственный вектор $\overline{M N}$, равный заданному вектору $\overline{A B}$.

Вектором называется направленный отрезок прямой евклидова пространства, у которого один конец (точка A) называется началом вектора, а другой конец (точка B) концом вектора (Рис. 1). Векторы обозначаются:

Если начало и конец вектора совпадают, то вектор называется нулевым вектором и обозначается 0 .

Пример. Пусть в двухмерном пространстве начало вектора имеет координаты A (12,6) , а конец вектора - координаты B (12,6). Тогда вектор является нулевым вектором.

Длина отрезка AB называется модулем (длиной , нормой ) вектора и обозначается |a |. Вектор длины, равной единице, называется единичным вектором . Кроме модуля вектор характеризуется направлением: вектор имеет направление от A к B . Вектор называется вектором, противоположным вектору .

Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. На рисунке Рис. 3 красные векторы коллинеарны, т.к. они лажат на одной прямой, а синие векторы коллинеарны, т.к. они лежат на параллельных прямых. Два коллинеарных вектора называются одинаково направленными , если их концы лежат по одну сторону от прямой, соединяющей их начала. Два коллинеарных вектора называются противоположно направленными , если их концы лежат по разные стороны от прямой, соединяющей их начала. Если два коллинеарных вектора лежат на одной прямой, то они называются одинаково направленными, если один из лучей, образованным одним вектором полностью содержит луч, образованным другим вектором. В противном случае векторы называются противоположно направленными. На рисунке Рис.3 синие векторы одинаково направлены, а красные векторы противоположно направлены.

Два вектора называются равными если они имеют равные модули и одинаково направлены. На рисунке Рис.2 векторы равны т.к. их модули равны и имеют одинаковое направление.

Векторы называются компланарными , если они лежат на одной плоскости или в параллельных плоскостях.

В n мерном векторном пространстве рассмотрим множество всех векторов, начальная точка которых совпадает с началом координат. Тогда вектор можно записать в следующем виде:

(1)

где x 1 , x 2 , ..., x n координаты конечной точки вектора x .

Вектор, записанный в виде (1) называется вектор-строкой , а вектор, записанный в виде

(2)

называется вектор-столбцом .

Число n называется размерностью (порядком ) вектора. Если то вектор называется нулевым вектором (т.к. начальная точка вектора ). Два вектора x и y равны тогда и только тогда, когда равны их соответствующие элементы.

Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии . Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод , понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.

Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:

1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии , авторы – Л.С. Атанасян и Компания . Сия вешалка школьной раздевалки уже выдержала 20-ть (!) переизданий, что, конечно, не является пределом.

2) Геометрия в 2 томах . Авторы Л.С. Атанасян, Базылев В.Т . Это литература для высшей школы, вам потребуется первый том . Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.

Обе книги можно бесплатно закачать в Интернете. Кроме того, можете использовать мой архив с готовыми решениями, который можно найти на странице Скачать примеры по высшей математике .

Из инструментальных средств предлагаю опять же собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.

Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)

А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов , а также и Векторное и смешанное произведение векторов . Не лишней будет и локальная задача – Деление отрезка в данном отношении . На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений , что позволит научиться решать задачи по геометрии . Также полезны следующие статьи: Уравнение плоскости в пространстве , Уравнения прямой в пространстве , Основные задачи на прямую и плоскость , другие разделы аналитической геометрии. Естественно, попутно будут рассматривать типовые задания.

Понятие вектора. Свободный вектор

Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:

В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор . Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.

!!! Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.

Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: , но допустима и запись , которую я буду использовать в дальнейшем . Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: , подразумевая тем самым, что это вектор.

То была стилистика, а сейчас о способах записи векторов:

1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.

2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор можно для краткости переобозначить маленькой латинской буквой .

Длиной или модулем ненулевого вектора называется длина отрезка . Длина нулевого вектора равна нулю. Логично.

Длина вектора обозначается знаком модуля: ,

Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.

То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор .

Если совсем просто – вектор можно отложить от любой точки :

Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор . Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте вектор произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё математически корректно – вектор можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)

Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.

Следует отметить, что с точки зрения физики понятие свободного вектора в общем случае некорректно, и точка приложения вектора имеет значение. Действительно, прямой удар одинаковой силы по носу или по лбу хватит развивать мой дурацкий пример влёчет разные последствия. Впрочем, несвободные векторы встречаются и в курсе вышмата (не ходите туда:)).

Действия с векторами. Коллинеарность векторов

В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.

Правило сложения векторов по правилу треугольников

Рассмотрим два произвольных ненулевых вектора и :

Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора :

Суммой векторов и является вектор . Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору , а затем по вектору . Тогда сумма векторов представляет собой вектор результирующего пути с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.

Кстати, если вектор отложить от начала вектора , то получится эквивалентное правило параллелограмма сложения векторов.

Сначала о коллинеарности векторов. Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными . Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены .

Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).

Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .

Правило умножения вектора на число легче понять с помощью рисунка:

Разбираемся более детально:

1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.

2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается . Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.

3) Обратите внимание, что все векторы коллинеарны , при этом один вектор выражен через другой, например, . Обратное тоже справедливо : если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор .

4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

Какие векторы являются равными?

Два вектора равны, если они сонаправлены и имеют одинаковую длину . Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».

С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.

Координаты вектора на плоскости и в пространстве

Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы и :

Векторы и ортогональны . Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность .

Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: .

Рассматриваемые векторы называют координатными векторами или ортами . Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов .Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.

Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами.

Любой вектор плоскости единственным образом выражается в виде:
, где – числа , которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .

Ужин подан:

Начнем с первой буквы алфавита: . По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
1) правило умножения вектора на число: и ;
2) сложение векторов по правилу треугольника: .

А теперь мысленно отложите вектор от любой другой точки плоскости. Совершенно очевидно, что его разложение будет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы не обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.

Векторы , иллюстрируют в точности правило умножения вектора на число, вектор сонаправлен с базисным вектором , вектор направлен противоположно по отношению к базисному вектору . У данных векторов одна из координат равна нулю, дотошно можно записать так:


А базисные векторы, к слову, так: (по сути, они выражаются сами через себя).

И, наконец: , . Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: , . Переставьте слагаемые местами и проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.

Рассмотренное разложение вида иногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:

Или со знаком равенства:

Сами базисные векторы записываются так: и

То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.

Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя . Строго на первом месте записываем координату, которая соответствует единичному вектору , строго на втором месте записываем координату, которая соответствует единичному вектору . Действительно, и – это ведь два разных вектора.

С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:

Любой вектор трехмерного пространства можно единственным способом разложить по ортонормированному базису :
, где – координаты вектора (числа) в данном базисе.

Пример с картинки: . Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: (красная стрелка), (зеленая стрелка) и (малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: . Вектор суммы начинается в исходной точке отправления (начало вектора ) и утыкается в итоговую точку прибытия (конец вектора ).

Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор от любой другой точки, и вы поймёте, что его разложение «останется при нём».

Аналогично плоскому случаю, помимо записи широко используются версии со скобками: либо .

Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем .

Базисные векторы записываются следующим образом:

Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.

А мы переходим к практической части:

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть , даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

Как найти вектор по двум точкам?

Если даны две точки плоскости и , то вектор имеет следующие координаты:

Если даны две точки пространства и , то вектор имеет следующие координаты:

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора .

Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.

Пример 1

Даны две точки плоскости и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно было использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:

Обязательно нужно понимать различие между координатами точек и координатами векторов :

Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный , и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

Пример 2

а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится;-). Чертежи делать не нужно. Решения и ответы в конце урока.

Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор , и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём вынесение множителя из-под корня . В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости , то его длина вычисляется по формуле .

Если дан вектор пространства , то его длина вычисляется по формуле .

Два вектора АА и ВБ, расположенные где угодно в пространстве, называются равными между собою, если один из них, например АА, можно совместить с другим, ВВ, посредством параллельного переноса («сдвига»), т. е. движения, состоящего в том, что вектор АА скользит параллельно самому себе так, что точка А скользит по отрезку АВ, а точка А - по отрезку В (рис. 4).

Если векторы АА и ВВ лежат на одной прямой, то по этой же прямой происходит и скольжение, совмещаюшее АА с ВВ, и мы получаем уже данное в первой главе определение равных векторов (на прямой).

Если же равные векторы АА и ВВ не лежат на одной прямой, то при совмещении вектора АА с вектором ВВ посредством параллельного переноса вектор АА зачертит параллелограмм ААВВ, в котором векторы АА и ВВ будут противоположными сторонами.

Поэтому определение равенства векторов может быть сформулировано и так:

Два вектора АА и ВВ, лежащие на одной и той же прямой, равны, если их отношение равно 1.

Два вектора АА и ВВ, не лежащие на одной прямой, равны, если, соединяя прямолинейными отрезками их начальные точки А и В и их концевые точки А и В, мы получим параллелограмм , в котором эти векторы будут двумя противоположными сторонами.

Два равных вектора могут отличаться друг от друга только своими точками приложения, и в большинстве тех случаев, с которыми нам придется иметь дело, это отличие несущественно; мы будем поэтому считать, что вектор ВВ, равный вектору АА, - это тот же вектор АА, но только перенесенный в другое место, а именно приложенный к точке К. Отвлекаясь, таким образом, от точки приложения вектора, мы приходим к тому, чтобы весь класс равных между собою векторов , приложенных ко всевозможным точкам М пространства, рассматривать как новый математический объект, и этот объект мы называем свободным вектором, определенным каждым из равных между собою векторов, составляющих данный класс (рис. 5).

Мы будем часто иисать . и понимать иод и как любой из равных между собою векторов АА, ВВ и т. д., так и весь образованный ими класс, т. е. свободный вектор.

Предположим теперь, что каждая точка М пространства сдвинулась вдоль приложенного к ней вектора (одного и того же для всех точек М) и переместилась в точку М. Мы получаем сдвиг, или параллельный перенос, всего пространства (в себе) на вектор .

Таким образом, возникает взаимно однозначное соответствие между сдвигами пространства и свободными векторами, позволяющее отождествить между собою эти два понятия.

Множество всех векторов, лежащих на дайной прямой (или на данной плоскости), естественно, тоже распадается на классы равных между собою векторов, называемых свободными векторами данной прямой или плоскости; они могут быть отождествлены со сдвигами этой прямой (или плоскости) по себе самой.

Нулевой вектор определяет нулевой (или «тождественный») сдвиг, состоящий в том, что все точки пространства остаются неподвижными на своих местах.