Лекция 3

Краткое содержание: Приведение произвольной и плоской системы сил к центру. Теорема о параллельном переносе силы, основная теорема статики Приведении системы сил к данному центру Главный вектор и главный момент системы сил. Зависимость главного момента от выбора центра. Аналитическое определение главного вектора и главного момента системы сил. Инварианты системы сил. Приведение системы сил к простейшему виду. Частные случаи приведения произвольной системы сил, динамический винт. Теорема Вариньона о моменте равнодействующей.

Приведение силы к заданному центру (Лемма Пуансо)

Равнодействующая системы сходящихся сил непосредственно находится с помощью сложения сил по правилу параллелограмма. Очевидно, что аналогичную задачу можно будет решить и для произвольной системы сил, если найти для них метод, позволяющий перенести все силы в одну точку.

Лемма Пуансо о параллельном переносе силы . . Не изменяя действия силы на твердое тело, ее можно переносить параллельно самой себе в любую точку тела, добавляя при этом пару, момент которой равен моменту данной силы относительно новой точки приложения.

Пусть сила приложена в точке A. Действие этой силы не изменяется, если в точке B приложить две уравновешенные силы. Полученная система трех сил представляет собой силу равную , но приложенную в точке В и пару с моментом . Процесс замены силы силой и парой сил называется приведением силы к заданному центру В. ■

Приведение системы сил к заданному центру.

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

Главным моментом системы сил относительно точки О тела, называется вектор, равный векторной сумме моментов всех сил системы относительно этой точки.

Теорема Пуансо (Основная теорема статики)

Произвольную систему сил, действующую на твердое тело, можно заменить эквивалентной системой, состоящей из силы и пары сил. Сила равна главному вектору системы сил и приложена в произвольно выбранной точке (центре приведения), момент пары равен главному

моменту системы сил относительно этой точки.

ДОКАЗАТЕЛЬСТВО.

Точка О - центр приведения. По лемме Пуансо перенесем силу F1 в точку О. При этом вместо F1 имеем в точке О такую же силу F1’ и дополнительно пару сил с моментом m1.


Аналогично перенесем все остальные силы. В результате получим систему сходящихся сил и систему пар сил. По теореме о существовании равнодействующей системы сходящихся

сил их можно заменить одной силой R, равной главному вектору. Систему пар по теореме о сложении пар можно заменить одной парой, момент которой равен главному моменту Mo. ■

Инварианты статики

Инварианты статики - характеристики системы сил, не зависящие от выбора центра приведения.

Первый инвариант статики - главный вектор системы сил (по определению).

Второй инвариант статики - скалярное произведение главного вектора и главного момента.

В самом деле, главный момент, очевидно, зависит от выбора центра приведения. Рассмотрим произвольную систему сил . Приведем ее сначала к центру О, а затем к центру О 1 .

Из рисунка видно,что .Поэтому формула для примет вид

Или .

Домножим обе части этого равенства на соответственно, учитывая что главный вектор системы сил является первым инвариантом статики: . По

свойству смешанного произведения векторов , следовательно:

.

Если воспользоваться определением скалярного произведения, то для второго инварианта можно получить еще одну форму:

Так как , то предыдущее выражение примет вид:

Таким образом, проекция главного момента на направление главного вектора есть величина постоянная для данной системы сил и не зависит от выбора центра приведения.

Частные случаи приведения произвольной системы сил к простейшему виду

1) Если при приведении системы сил к центру О то на основании (6.4) можно записать

.

равнодействующей , приложенной в центре приведения и совпадающей по величине и направлению с главным вектором.

2)Если при приведении системы сил к центру О

то представив в виде пары сил с плечом ,

получим: .

В этом случае система сил приводится к равнодействующей , совпадающей по величине и направлению с главным вектором, а линия действия равнодействующей отстоит от линии действия главного вектора на расстоянии .

3)Если при приведении системы сил к центру О то можно записать

,то есть система сил приводится к паре сил с моментом, равным главному моменту системы сил.

4)Если при приведении системы сил к центру О то можно записать

Т.е. система сил находится в равновесии .

Определение: Система, состоящая из силы и пары сил, момент которой коллинеарен силе (плоскость пары перпендикулярна линии действия силы), называется динамой или динамическим винтом .

Если при приведении системы сил к центру О второй инвариант не равен нулю, то эта система сил приводится к динаме .

Разложив на две составляющие - вдоль главного вектора и - перпендикулярно главному вектору, для и будем иметь случай 2),а вектор , как свободный можно перенести параллельно самому себе в точку О 1:

Вектора представляют собой динаму, где , .

В рассматриваемом случае приведения системы сил главный момент имеет минимальное значение. Это значение момента сохраняется при приведении заданной системы сил к любой точке, лежащей на линии действия главного вектора и главного момента . Уравнение этой линии(центральная винтовая ось системы сил) определяется из условия коллинеарности векторов и : .

Теорема о приведении системы сил:

Любая система сил, действующих на абсолютно твердое тело, может быть заменена одной силой R , равной главному вектору этой системы сил и приложенной к произвольно выбранному центру О, и одной парой сил с моментом L O , равным главному моменту системы сил относительно центра О.

Такая эквивалентная замена данной системы сил силой R и парой сил с моментом L O называютприведением системы сил к центу О .

Рассмотрим здесь частный случай приведения плоской системы сил к центру О, лежащему в той же плоскости. В этом случае система сил заменяется одной силой и одной парой сил, лежащих в плоскости действия сил системы. Момент этой пары сил можно рассматривать как алгебраическую величину L O и изображать на рисунках дуговой стрелкой (алгебраический главный момент плоской системы сил ).

В результате приведения плоской системы сил к центру возможны следующие случаи:

    если R = 0, L O = 0, то заданная система является равновесной ;

    если хотя бы одна из величин R или L O не равна нулю, то система сил не находится в равновесии . При этом:

16 Вопрос. Уравнение равновесия

Для равновесия твердрго тела, находящегося под действием плоской системы сил,необходимо и достаточно, чтобы главный вектор этой системы сил и ее алгебраический главный момент были равны нулю, то есть R = 0, L O = 0, где О - любой центр, расположенный в плоскости действия сил системы.

Вытекающие отсюда аналитические условия равновесия (уравнения равновесия) плоской системы сил можно сформулировать в следующих трех формах:

    Основная форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из координатных осей и сумма их алгебраических моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю:

F ix = 0; F iy = 0; M O (F i) = 0. (I)

    Вторая форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно двух центров А и В и сумма их проекций на ось Ox, не перпендикулярную оси Ox, были равны нулю:

F ix = 0; M А (F i) = 0; M В (F i) = 0. (II)

    Третья форма уравнений равновесия (уравнения трех моментов):

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно любых трех центров А,В и С, не лежащих на одной прямой, были равны нулю:

M А (F i) = 0; M В (F i) = 0; M С (F i) = 0. (III)

Уравнения равновесия в форме (I) считаются основными, так как при их использовании нет никаких ограничений на выбор координатных осей и центра моментов.

17 Вопрос

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O 1 . Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: M O1Z =åM o1z (F k) (5.11). С другой стороны, имеем M O1Z =M Olz (R), (5.12) так как главный момент для центра приведения О равен нулю (M Oz =0). Сравнивая соотношения (5.11) и (5.12), получаем M O1z (R)=åM OlZ (F k); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R 1 приложена в какой-либо точке О 1 с координатами х и у (рис. 5.5) и известны главный вектор F o и главный момент М Оя при центре приведения в начале координат. Так как R 1 =F o , то составляющие равнодей­ствующей по осям х и у равны R lx =F Ox =F Ox i и R ly =F Oy =F oy j. Согласно теореме Вариньона мо­мент равнодействующей относительно на­чала координат равен главному моменту при центре приведения в начале коорди­нат, т. е. М оz =M Oz (R 1)=xF Oy –yF Ox . (5.14). Величины M Oz , F Ox и F oy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и ув уравнении (5.14) можно смотреть как на текущие координаты ли­нии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При F ox ≠0 его можно переписать в виде y=(F oy /F ox)x–(M oz /F ox).

Плоская система сил тоже приводится к силе, равной и приложенной в произвольно выбранном центре О, и паре с моментом

при этом вектор можно определить или геометрически построением силового многоугольника (см. п. 4), или аналитически. Таким образом, для плоской системы сил

R x =F kx , R y =F ky ,

где все моменты в последнем равенстве алгебраические и сумма тоже алгебраическая.

Найдем, к какому простейшему виду может приводиться данная плоская система сил, не находящаяся в равновесии. Результат зависит от значений R и М O .

  • 1. Если для данной системы сил R=0, a M O ?0, то она приводится к одной паре с моментом М O , значение которого не зависит от выбора центра О.
  • 2. Если для данной системы сил R?0, то она приводится к одной силе, т. е. к равнодействующей. При этом возможны два случая:
    • а) R?0, М O =0. В этом случае система, что сразу видно, приводится к равнодействующей R, проходящей через центр О;
    • б) R?0, М O ?0. В этом случае пару с моментом М O можно изобразить двумя силами R" и R", беря R"=R, a R"= - R. При этом, если d=OC - плечо пары, то должно быть Rd=|M O |.

Отбросив теперь силы R и R", как уравновешенные, найдем, что вся система сил заменяется равнодействующей R"=R, проходящей через точку С. Положение точки С определяется двумя условиями: 1) расстояние OC=d () должно удовлетворять равенству Rd=|M O |; 2) знак момента относительно центра О силы R", приложенной в точке С, т. е. знак m O (R") должен совпадать со знаком М O .

Теорема о приведении системы сил:

Любая система сил, действующих на абсолютно твердое тело, может быть заменена одной силой R , равной главному вектору этой системы сил и приложенной к произвольно выбранному центру О, и одной парой сил с моментом L O , равным главному моменту системы сил относительно центра О.

Такая эквивалентная замена данной системы сил силой R и парой сил с моментом L O называютприведением системы сил к центу О .

Рассмотрим здесь частный случай приведения плоской системы сил к центру О, лежащему в той же плоскости. В этом случае система сил заменяется одной силой и одной парой сил, лежащих в плоскости действия сил системы. Момент этой пары сил можно рассматривать как алгебраическую величину L O и изображать на рисунках дуговой стрелкой (алгебраический главный момент плоской системы сил).

В результате приведения плоской системы сил к центру возможны следующие случаи:

  1. если R = 0, L O = 0, то заданная система является равновесной ;
  2. если хотя бы одна из величин R или L O не равна нулю, то система сил не находится в равновесии .
    При этом:

16 вопрос. Уравнение равновесия

Для равновесия твердрго тела, находящегося под действием плоской системы сил,необходимо и достаточно, чтобы главный вектор этой системы сил и ее алгебраический главный момент были равны нулю, то есть R = 0, L O = 0, где О - любой центр, расположенный в плоскости действия сил системы.

Вытекающие отсюда аналитические условия равновесия (уравнения равновесия) плоской системы сил можно сформулировать в следующих трех формах:

  1. Основная форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из координатных осей и сумма их алгебраических моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю:

F ix = 0; F iy = 0; M O (F i) = 0. (I)

  1. Вторая форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно двух центров А и В и сумма их проекций на ось Ox, не перпендикулярную оси Ox, были равны нулю:

F ix = 0; M А (F i) = 0; M В (F i) = 0. (II)

  1. Третья форма уравнений равновесия (уравнения трех моментов):

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно любых трех центров А,В и С, не лежащих на одной прямой, были равны нулю:



M А (F i) = 0; M В (F i) = 0; M С (F i) = 0. (III)

Уравнения равновесия в форме (I) считаются основными, так как при их использовании нет никаких ограничений на выбор координатных осей и центра моментов.

Вопрос

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O 1 . Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: M O1Z =åM o1z (F k) (5.11). С другой стороны, имеем M O1Z =M Olz (R), (5.12) так как главный момент для центра приведения О равен нулю (M Oz =0). Сравнивая соотношения (5.11) и (5.12), получаем M O1z (R)=åM OlZ (F k); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R 1 приложена в какой-либо точке О 1 с координатами х и у (рис. 5.5) и известны главный вектор F o и главный момент М Оя при центре приведения в начале координат. Так как R 1 =F o , то составляющие равнодей­ствующей по осям х и у равны R lx =F Ox =F Ox i и R ly =F Oy =F oy j. Согласно теореме Вариньона мо­мент равнодействующей относительно на­чала координат равен главному моменту при центре приведения в начале коорди­нат, т. е. М оz =M Oz (R 1)=xF Oy –yF Ox . (5.14). Величины M Oz , F Ox и F oy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и ув уравнении (5.14) можно смотреть как на текущие координаты ли­нии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При F ox ≠0 его можно переписать в виде y=(F oy /F ox)x–(M oz /F ox).



Вопрос

Заделка одного тела в другое (например стержня в неподвижную стену) не позволяет данному телу перемещаться и поворачиваться относительно другого. В случае заделки силовая реакция R A не является единственным фактором взаимодействия между телом и опорой. Кроме этой силы реакцию заделки определяет также пара сил с неизвестным заранее моментом M A . Если силу R A представить ее составляющими X A , Y A , то для нахождения реакции заделки надо определить три неизвестные скалярные величины: X A , Y A , M A .

Приведем примеры замены плоских систем параллельных распределенных сил их равнодействующими.

Для такой системы сил интенсивность имеет постоянное значение: q = const.

При решении задач статики эту систему сил можно заменять сосредоточенной равнодействующей силой Q , равной по модулю произведению интенсивности q на длину отрезка AB = a (Q = q · a) и приложенной в середине отрезка AB.

Для такой системы сил интенсивность q является переменной величиной, изменяющейся от нуля до максимального значения q max по линейному закону.

Равнодействующая Q этой системы сил равна по модулю Q =0.5 · a · q max и приложена в точке K, делящей отрезок AB в отношении AK: KB = 2: 1.

19.Расчет составных конструкций
1.1. Расчет с разделением системы тел на отдельные тела
1.1.1. Систему тел по внутренней связи С разделяют на отдельные тела и рассматривают их равновесие.
1.1.2. От каждого из тел отбрасывают все связи, заменяя их действие реакциями . В заданных механизмах приложены следующие виды связей: неподвижный осевой шарнир (реакцию разлагают на составляющие, параллельные координатным осям X, Y); подвижныйосевой шарнир (реакция N перпендикулярна опорной поверхности, направлена от нее); жесткая заделка (реакция представляет собой комбинацию реакции неподвижного шарнираX, Y и пары сил с реактивным
моментом m).Составляющие реакции внутреннего шарнира С, приложенные к разным телам системы, по принципу действия и противодействия равны по модулю и направлены противоположно. Распределенную нагрузку заменяют сосредоточенной силой, приложенной посредине интервала и равной модулю произведения интенсивности нагрузки q на длину интервала.
1.1.3. Составляют уравнения равновесия, включающие уравнения проекций на стандартные оси и уравнения моментов (расчетное и проверочное). Центр расчетного уравнения моментов выбирают на пересечении линий действия максимального количества неизвестных реакций, проверочного уравнения – на пересечении линий действия известных сил, через которое не проходит ни одна из непроверенных неизвестных реакций. Рекомендуется уравнения равновесия составлять, рассматривая силы по очереди следующим образом: определяют угол острый α между линией силы и линией одной из осей; проекция силы на эту ось будет содержатьcos α, на вторую ось –sin α; проекция положительна, если угол совмещения вектора силы с осью острый, и отрицательна – если он тупой; определяют плечо силы, опуская перпендикуляр из центра на линию действия силы, и знак момента по направлению поворота плеча силой вокруг центра (при повороте плеча по часовой стрелке момент отрицателен, против - положителен). При произвольном положении силы для определения момента ее разлагают на составляющие, параллельные координатным осям (их величины равны соответствующим проекциям силы) и находят сумму моментов этих составляющих, используя теорему Вариньона .
Таким образом, для каждого из тел составляют по 3 расчетных и 1 проверочное уравнение.
1.1.4. Решают систему из 6 расчетных уравнений относительно неизвестных реакций.
Подставляют найденные реакции в проверочные уравнения, модуль полученной суммы не должен превышать 0,02 Rср, гдеRср – среднее значение модулей проверяемых реакций.
1.2. Расчет с использованием принципа отвердевания
1.2.1. Заменяют внутренний шарнир С жестким соединением и рассматривают равновесие полученного тела. Вторым рассматривают одно из тел системы (п.1.1.1).
1.2.2. Составляют чертеж для каждого из рассматриваемых тел аналогично п.1.1.2.
1.2.3. Для первого тела составляют 3 расчетные и 1 проверочное уравнение аналогично п.1.1.3. Для второго тела составляют одно расчетное уравнение моментов сил относительно центра С.
1.2.4.Решают систему из 4 расчетных уравнений и делают проверку аналогично п.1.1.4. 2.

2.Расчет с помощью принципа возможных перемещений.Реакции связей определяют, рассматривая их по очереди.

20.Условие равновесия рычага.Устойчивость тел при опрокидывании. Расстояние от точки опоры до прямой, вдоль которой действует сила, называют плечом этой силы. Обозначим F1 и F2 силы, действующие на рычаг со стороны грузов (см. схемы в правой части рис. 25.2). Плечи этих сил обозначим соответственно l1 и l2. Наши опыты показали, что рычаг находится в равновесии, если приложенные к рычагу силы F1 и F2 стремятся вращать его в противоположных направлениях, причем модули сил обратно пропорциональны плечам этих сил: F1/F2 = l2/l1.Устойчивость тел при опрокидывании. Это задачи, возникающие при конструировании различных грузоподъемных механизмов и при расчете безопасных условий их эксплуатации, оговариваемых в правилах по работе с этими механизмами. Особенностью решения этих не очень сложных задач на плоскую систему сил является то, что при их решении не составляются уравнения равновесия. Отдельно определяются:а) опрокидывающий момент (Мопр)- сумма моментов сил, которые стремятся опрокинуть рассматриваемый механизм относительно некоторой проектирующейся на чертеже в точку оси (точки опоры); в) удерживающий момент (Муд)- сумма моментов сил, препятствующих опрокидыванию. Для устойчивой работы механизма необходимо, чтобы удерживающий момент с некоторым запасом был больше опрокидывающего. Отношение Муд,/ Мопр =k принято называть коэффициентом устойчивости. Величина k должна быть, естественно, больше единицы. Для различных грузоподъемных механизмов и для разных условий их работы величина коэффициента устойчивости определяется из СНиП, ТУ и других источников. С учетом этого коэффициента приводятся расчеты величины груза противовеса или его положения на механизме, просчитываются варианты - при каком вылете стрелы и с какими грузами можно безопасно работать. Пример решения одной из задач на устойчивость приведен ниже. Особенно важно уметь выполнять элементарные расчеты на устойчивость в производственных условиях, когда приходится работать с предельными для имеющегося в распоряжении крана грузами.

21 Трение скольжения. Законы трения. Коэффициент трения. Между движущимися телами в плоскости их соприкосновения возникает сила трения скольжения. Обусловлено это прежде всего шероховатостью соприкасающихся поверхностей и наличием сцепления у прижатых тел. В инженерных расчетах обычно пользуются установленными опытным путем закономерностями, которые с некоторой степенью точности отражают действие силы трения. Эти закономерности называют законами трения скольжения (Кулона). Их можно сформулировать следующим образом.
1. При стремлении сдвинуть одно тело относительно другого в плоскости их соприкосновения возникает сила трения F , модуль которой может принимать любые значения от нуля до Fmax, т. е.0<=F<=Fmax . Сила трения приложена к телу и направлена в сторону, противоположную возможному направлению скорости точки приложения силы.
2. Максимальная сила трения равна произведению коэффициента трения f на силу нормального давления N: Fmax=fN.
Коэффициент трения f - безразмерная величина, зависящая от материалов и состояния поверхностей соприкасающихся тел (шероховатость, температура, влажность и т. п.). Определяют его опытным путем.
Различают коэффициенты трения покоя и трения скольжения, причем последний, как правило, зависит и от скорости скольжения. Коэффициент трения покоя соответствует такоймаксимальной силе трения Fmax, при которой имеется предельное состояние равновесия. Малейшее увеличение внешних сил может вызвать движение. Коэффициент трения покоя, как правило, немного больше коэффициента трения скольжения. С увеличением скорости скольжения значение коэффициента трения скольжения сначала незначительно уменьшается, а затем остается практически неизменным. Значения коэффициентов трения для некоторых пар трения следующие: дерево по дереву 0,4-0,7; металл по металлу 0,15-0,25; сталь по льду 0,027.
3. Максимальная сила трения в довольно широких пределах не зависит от площади соприкасающихся поверхностей.
Силу трения скольжения иногда называют силой сухого трения.

Угол и конус трения

Реакция реальной (шерохо­ватой) связи будет слагаться из двух составляющих: из нормальной реакции и перпендикулярной к ней силы трения . Следовательно, полная реакция будет отклонена от нормали к поверхности на не­который угол. При изменении силы трения от нуля до F пр сила R будет меняться от N до R пр, а ее угол с нормалью будет расти от нуля до некото­рого предельного значения (рис. 26).

Рис.26

Наиболь­ший угол , который полная реакция шероховатой связи образует с нормалью к поверхности, называется углом трения . Из чертежа видно, что

Так как , отсюда находим следующую связь между углом трения и коэффициентом трения:

При равновесии полная реакцияR, в зависимости от сдвигающих сил, может проходить где угодно внутри угла трения. Когда равно­весие становится предельным, реакция будет отклонена от нормали на угол .

Конусом трения называют конус, описанный предельной силой реакции шероховатой связи вокруг направления нормальной реакции.

Если к телу, лежащему на шероховатой поверх­ности, приложить силуР, образующую угол с нор­малью (рис. 27), то тело сдвинется только тогда, когда сдвигающее усилие Psin будет больше (мы считаем N=Pcos , пренеб­регая весом тела). Но неравенство , в котором , выполняется только при , т.е. при . Следовательно, ни­какой силой, образующей с нормалью угол , меньший угла трения , тело вдоль данной поверхности сдвинуть нельзя. Этим объясняются известные явления заклинивания или само­торможения тел.

Рис.27

Для равновесия твёрдого тела на шероховатой поверхности необходимо и достаточно, чтобы линия действия равнодействующей активных сил, действующих на твёрдое тело, проходила внутри конуса трения или по его образующей через его вершину.

Тело нельзя вывести из равновесия любой по модулю активной силой, если её линия действия проходит внутри конуса трения.

Трение качения

происхождение трения качения можно наглядно представить себе так. Когда шар или цилиндр катится по поверхности другого тела, он немного вдавливается в поверхность этого тела, а сам немного сжимается. Таким образом, катящееся тело всё время как бы вкатывается на горку.

Рис.33

Вместе с тем происходит отрыв участков одной поверхности от другой, а силы сцепления, действующие между этими поверхностями, препятствуют этому. Оба эти явления и вызывают силы трения качения. Чем твёрже поверхности, тем меньше вдавливание и тем меньше трение качения.

Трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого.

Пока , каток находится в покое; при начинается качение.

Входящая в формулу линейная величина k называется коэф­фициентом трения качения. Измеряют величину k обычно в санти­метрах. Значение коэффициента k зависит от материала тел и опре­деляется опытным путем.

Коэффициент трения качения при качении в первом приближении можно считать не зависящим от угловой скорости качения катка и его скорости скольжения по плоскости.

Для вагонного колеса по рельсу k=0,5 мм.

Рассмотрим движение ведомого колеса.

Качение колеса начнется, когда выполнится условие QR>M или Q>M max /R=kN/R

Скольжение колеса начнется, когда выполнится условие Q>F max =fN.

Обычно отношение и качение начинается раньше скольжения.

Если , то колесо будет скользить по поверхности, без качения.

Отношение для большинства материалов значительно меньше статического коэффициента трения . Этим объясняетсято, что в технике, когда это возможно, стремятся заменить скольжение качением (колеса, катки, шариковые подшипники и т. п.).

Плоскую систему сил, приложенных в точках А, В, С, Д мы заменим:

1) силами F 1 ’ , F 2 ’ , F 3 ’ , F 4 ’ , приложенными в точке О;

2) парами сил: ­

F 1 F 1 ’ : М 1 =М о (F 1)= F 1 а 1

F 2 F 2 ’ : М 2 =М о (F 2)= F 2 а 2

F 3 F 3 ’ : М 3 =М о (F 3)= F 3 а 3

F 4 F 4 ’ : М 4 =М о (F 4)= F 4 а 4

Сходящиеся в точке О силы F 1 ’ , F 2 ’ , F 3 ’ , F 4 ’ можно заменит одной силой(равнодействующей) F гл:

F гл = F 1 ’ + F 2 ’ + F 3 ’ + F 4 ’ = F 1 + F 2 + F 3 + F 4

F гл – главный вектор системы сил.

Полученные пары сил можно заменить результирующей парой, момент которой М гл :

М гл =М 1 +М 2 +М 3 +М 4 = Σ М і = Σ М о (F і)

М гл - главный момент относительно точки приведения.

Плоская система сил в данной точке О заменяется эквивалентной системой, состоящей из одной силы (главного вектора) и одной пары (главного момента).

Теорема о моменте равнодействующей (теорема Вариньона)

Момент равнодействующей плоской системы сил относительно произвольно взятой точки равен алгебраической сумме моментов составляющих сил относительно той же точки.

М о (F Σ)= Σ М о (F і)

Уравнения равновесия плоской системы сил

F ГЛ = 0;

М гл = ΣM o (F i) = 0.

Модуль главного вектора можно определить через проекции на координатные оси всех сил системы.

F ГЛ = (ΣF іх) 2 +(ΣF іу) 2 =0 из этого следуют уравнения равновесия:

Σ F іх =0

Σ F іу =0

Σ М о (F і)=0

Другие формы уравнений равновесия:

Σ М А (F і)=0

Σ М В (F і)=0 (АВС не лежат на одной

Σ М С (F і)=0 прямой)

Σ М А (F і)=0 (ось х не перпендикулярна

Σ М В (F і)=0 прямой АВ)

Σ F іх =0

Для системы параллельных сил выбрав одну из осей проекций, параллельной этим силам (ось у), а другую перпендикулярной к ним (ось х), получим два уравнения равновесия:

Σ F іу =0

Σ М о (F і)=0

Σ М А (F і)=0

Σ М В (F і)=0

Алгоритм решения задач

1.Выделяем обьект равновесия(тело или точку): будем рассматривать равновесие относительно...

Показываем на рисунке все действующие силы, включая реакции связей.

3. Выбираем систему координат – оси координат желательно направлять пралельно или перпендикулярно к искомым силам.

Составляем уравнения равновесия объекта исследования.

Σ F іх =0

Σ F іу =0

Σ М о (F і)=0

Из полученных уравнений определяем неизвесные величины (определяем реакции).



Проверяем правильность решения уравнений.

Σ М р (F і)=0

Σ М е (F і)=0

5. Опорные устройства балочных систем

Шарнирно-подвижная опора

Шарнирно-неподвижная форма и жесткая заделка (защемление )

Тема:

«Центр тяжести.

Геометрические характеристики плоских сечений»

План

1. Центр параллельных сил и его координаты.
2. Центр тяжести площадей. Статистические моменты площадей.
3. Решение задач на определение координат центра тяжести плоской составной фигуры.
4. Полярные и осевые моменты инерции.
5. Осевые моменты инерции относительно параллельных осей.
6. Определение моментов инерции составных сечений с помощью таблиц нормального сортамента.

1. Центр параллельных сил и его координаты


Пусть задана система параллельных сил F 1, F 2 , F 3, ..., Fn ; координаты точек C 1 , С2, С3, ..., Сп приложения этих сил известны (рис. 42, б). Обозначим точку приложения равнодействующей буквой С, ее координаты обозначим x с, y с.
FΣ = F 1 + F 2 + F 3+…. + Fn = ΣF і . (1)



FΣ хс = F 1 x 1 + F 2 x 2 + F 3 x 3 +… + Fnxn = Σ F і x і ,

х c = F 1 x 1 + F 2 x 2 + F 3 x 3 +… + Fnxn / FΣ = Σ F і x і / FΣ

FΣ = F 1+ F 2+ F 3+…+ Fn = Σ F іх c =
= F 1 x 1 + F 2 x 2 + F 3 x 3 +… + Fnxn / F 1+ F 2+ F 3+…+ Fn = Σ F і x і / F і (2)