Определение 1. ПустьЕ – бесконечное множество. Если любая окрестностьсодержит точки множестваЕ , отличные от точкиа , тоа называетсяпредельной точкой множестваЕ .

Определение 2. (Генрих Гейне (1821-1881)). Пусть функция
определена на множествеХ иА называетсяпределом функции
в точке(или при
, если для любой последовательности значений аргумента
, сходящейся к, соответствующая последовательность значений функциисходится к числуА . Пишут:
.

Примеры . 1) Функция
имеет предел, равныйс , в любой точке числовой прямой.

Действительно, для любой точки и любой последовательности значений аргумента
, сходящейся ки состоящей из чисел, отличных от, соответствующая последовательность значений функции имеет вид
, а мы знаем, что эта последовательность сходится кс . Поэтому
.

2) Для функции

.

Это очевидно, так как если
, то и
.

3) Функция Дирихле
не имеет предела ни в одной точке.

Действительно, пусть
и
, причем все– рациональные числа. Тогда
для всехn , поэтому
. Если же
и все– иррациональные числа, то
для всехn , поэтому
. Мы видим, что условия определения 2 не выполняются, поэтому
не существует.

4)
.

Действительно, возьмем произвольную последовательность
, сходящуюся к

числу 2. Тогда . Что и требовалось доказать.

Определение 3. (Коши (1789-1857)). Пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называетсяпределом функции
в точке(или при
, если для любого
найдется
, такое, что для всех значений аргументах , удовлетворяющих неравенству

,

справедливо неравенство

.

Пишут:
.

Определение Коши можно дать и с помощью окрестностей, если заметить, что , а:

пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называется пределом функции
в точке, если для любой-окрестности точкиА
найдется проколотая- окрестность точки
,такая, что
.

Это определение полезно проиллюстрировать рисунком.

Пример 5.
.

Действительно, возьмем
произвольно и найдем
, такое, что для всехх , удовлетворяющих неравенству
выполняется неравенство
. Последнее неравенство равносильно неравенству
, поэтому видим, что достаточно взять
. Утверждение доказано.

Справедлива

Теорема 1. Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство . 1) Пусть
по Коши. Докажем, что это же число является пределом и по Гейне.

Возьмем
произвольно. Согласно определению 3 существует
, такое, что для всех
выполняется неравенство
. Пусть
– произвольная последовательность такая, что
при
. Тогда существует номерN такой, что для всех
выполняется неравенство
, поэтому
для всех
, т.е.

по Гейне.

2) Пусть теперь
по Гейне. Докажем, что
и по Коши.

Предположим противное, т.е. что
по Коши. Тогда существует
такое, что для любого
найдется
,
и
. Рассмотрим последовательность
. Для указанного
и любогоn существует

и
. Это означает, что
, хотя
, т.е. числоА не является пределом
в точкепо Гейне. Получили противоречие, которое и доказывает утверждение. Теорема доказана.

Теорема 2 (о единственности предела). Если существует предел функции в точке, то он единственный.

Доказательство . Если предел определен по Гейне, то его единственность вытекает из единственности предела последовательности. Если предел определен по Коши, то его единственность вытекает из эквивалентности определений предела по Коши и по Гейне. Теорема доказана.

Аналогично критерию Коши для последовательностей имеет место критерий Коши существования предела функции. Прежде чем его сформулировать, дадим

Определение 4. Говорят, что функция
удовлетворяет условию Коши в точке, если для любого
существует

, таких, что
и
, выполняется неравенство
.

Теорема 3 (критерий Коши существования предела). Для того чтобы функция
имела в точкеконечный предел, необходимо и достаточно, чтобы в этой точке функция удовлетворяла условию Коши.

Доказательство .Необходимость . Пусть
. Надо доказать, что
удовлетворяет в точкеусловию Коши.

Возьмем
произвольно и положим
. По определению предела длясуществует
, такое, что для любых значений
, удовлетворяющих неравенствам
и
, выполняются неравенства
и
. Тогда

Необходимость доказана.

Достаточность . Пусть функция
удовлетворяет в точкеусловию Коши. Надо доказать, что она имеет в точкеконечный предел.

Возьмем
произвольно. По определению 4 найдется
, такое, что из неравенств
,
следует, что
– это дано.

Покажем сначала, что для всякой последовательности
, сходящейся к, последовательность
значений функции сходится. Действительно, если
, то, в силу определения предела последовательности, для заданного
найдется номерN , такой, что для любых

и
. Поскольку
в точкеудовлетворяет условию Коши, имеем
. Тогда по критерию Коши для последовательностей последовательность
сходится. Покажем, что все такие последовательности
сходятся к одному и тому же пределу. Предположим противное, т.е. что есть последовательности
и
,
,
, такие, что. Рассмотрим последовательность. Ясно, что она сходится к, поэтому по доказанному выше последовательностьсходится, что невозможно, так как подпоследовательности
и
имеют разные пределыи. Полученное противоречие показывает, что=. Поэтому по определению Гейне функция имеет в точкеконечный предел. Достаточность, а значит и теорема, доказаны.

Пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции, так как именно с ними чаще всего сталкиваются студенты. Но сначала - самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a , то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A , к которому стремится функция при х , стремящемся к определенной точке а . Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

Lim - от английского limit - предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача - найти предел.

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

Кстати, если Вас интересуют базовые операции над матрицами , читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х . Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность . Что делать в таких случаях? Прибегать к хитростям!


Неопределенности в пределах

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.


Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Еще один вид неопределенностей: 0/0

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

Сократим и получим:

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Налицо типичная неопределенность 0/0 . Возьмем производные от числителя и знаменателя:

Вуаля, неопределенность устранена быстро и элегантно.

Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос "как решать пределы в высшей математике". Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.


Начнем с общих вещей, которые ОЧЕНЬ важны, но мало кто обращает на них внимание.

Предел функции - основные понятия.

Бесконечность обозначают символом . По сути, бесконечность это есть либо бесконечно большое положительное число , либо бесконечно большое отрицательное число .

Что это означает: когда Вы видите , то не имеет разницы это или . Но лучше не заменять на , равно как и лучше не заменять на .

Записывать предел функции f(x) принято в виде , снизу указывается аргумент x и через стрелочку к какому значению он стремится.

Если представляет из себя конкретное действительное число, то говорят о пределе функции в точке .

Если или . то говорят о пределе функции на бесконечности .

Сам предел может быть равен конкретному действительному числу , в этом случае говорят, что предел конечен .

Если , или , то говорят, что предел бесконечен .

Еще говорят, что предел не существует , если нельзя определить конкретное значение предела или его бесконечное значение (, или ). Например, предел от синуса на бесконечности не существует.

Предел функции - основные определения.

Пришло время заняться нахождением значений пределов функций на бесконечности и в точке. В этом нам помогут несколько определений. Эти определения опираются на числовые последовательности и их сходимость или расходимость .

Определение (нахождение предела функции на бесконечности).

Число А называется пределом функции f(x) при , если для любой бесконечно большой последовательности аргументов функции (бесконечно большой положительной или отрицательной), последовательность значений этой функции сходится к А . Обозначается .

Замечание.

Предел функции f(x) при бесконечен, если для любой бесконечно большой последовательности аргументов функции (бесконечно большой положительной или отрицательной), последовательность значений этой функции является бесконечно большой положительной или бесконечно большой отрицательной. Обозначается .

Пример.

Используя определение предела при доказать равенство .

Решение.

Запишем последовательность значений функции для бесконечно большой положительной последовательности значений аргумента .

Очевидно, что члены этой последовательности монотонно убывают к нулю.

Графическая иллюстрация.

Теперь запишем последовательность значений функции для бесконечно большой отрицательной последовательности значений аргумента .

Члены этой последовательности также монотонно убывают к нулю, что доказывает исходное равенство.

Графическая иллюстрация.


Пример.

Найти предел

Решение.

Запишем последовательность значений функции для бесконечно большой положительной последовательности значений аргумента. К примеру, возьмем .

Последовательность значений функции при этом будет (синие точки на графике)

Очевидно, что эта последовательность является бесконечно большой положительной, следовательно,

А сейчас запишем последовательность значений функции для бесконечно большой отрицательной последовательности значений аргумента. К примеру, возьмем .

Последовательность значений функции при этом будет (зеленые точки на графике)

Очевидно, что эта последовательность сходится к нулю, следовательно,

Графическая иллюстрация


Ответ:

Сейчас поговорим о существовании и нахождении предела функции в точке. Все основывается на определении односторонних пределов . Без вычисления односторонних пределов не обойтись при .

Определение (нахождение предела функции слева).

Число В называется пределом функции f(x) слева при , если для любой сходящейся к а последовательности аргументов функции , значения которых остаются меньше а (), последовательность значений этой функции сходится к В .

Обозначается .

Определение (нахождение предела функции справа).

Число В называется пределом функции f(x) справа при , если для любой сходящейся к а последовательности аргументов функции , значения которых остаются больше а (), последовательность значений этой функции сходится к В .

Обозначается .

Определение (существование предела функции в точке).

Предел функции f(x) в точке а существует, если существуют пределы слева и справа а и они равны между собой.

Замечание.

Предел функции f(x) в точке а бесконечен, если пределы слева и справа а бесконечны.

Поясним эти определения на примере.

Пример.

Доказать существование конечного предела функции в точке . Найти его значение.

Решение.

Будем отталкиваться от определения существования предела функции в точке.

Во-первых, покажем существование предела слева. Для этого возьмем последовательность аргументов , сходящуюся к , причем . Примером такой последовательности может являться

На рисунке соответствующие значения показаны зелеными точками.

Легко видеть, что эта последовательность сходится к -2 , поэтому .

Во-вторых, покажем существование предела справа. Для этого возьмем последовательность аргументов , сходящуюся к , причем . Примером такой последовательности может являться

Соответствующая последовательность значений функции будет иметь вид

На рисунке соответствующие значения показаны синими точками.

Легко видеть, что эта последовательность также сходится к -2 , поэтому .

Этим мы показали, что пределы слева и справа равны, следовательно, по определению существует предел функции в точке , причем

Графическая иллюстрация.

Продолжить изучение основных определений теории пределов рекомендуем темой .

Бесконечно малые и бесконечно большие функции. Понятие о неопределенностях. Раскрытие простейших неопределенностей. Первый и второй замечательные пределы. Основные эквивалентности. Функции, эквивалентные функциям в окрестности .

Числовой функцией называется соответствие, которое каждому числу х из некоторого заданного множества сопоставляет единственное число y.

СПОСОБЫ ЗАДАНИЯ ФУНКЦИЙ

    Аналитический способ: функция задается с помощью

математической формулы.

    Табличный способ: функция задается с помощью таблицы.

    Описательный способ: функция задается словесным описанием

    Графический способ: функция задается с помощью графика

    Пределы на бесконечности

Пределы функции на бесконечности

Элементарные функции:

1) степенная функция y=x n

2) показательная функция y=a x

3) логарифмическая функция y=log a x

4) тригонометрические функции y=sin x, y=cos x, y=tg x, y=ctg x

5) обратные тригонометрические функции y=arcsin x, y=arccos x, y=arctg x, y=arcctg x.

ПустьиТогда система множеств

является фильтром и обозначается или Пределназывается пределом функции f при x стремящемся к бесконечности.

Опр.1. (по Коши). Пусть задана функция y=f(x): X à Y и точка a является предельной для множества X. Число A называется пределом функции y=f(x) в точке a , если для любого ε > 0 можно указать такое δ > 0, что для всех xX, удовлетворяющим неравенствам 0 < |x-a | < δ, выполняется |f(x) – A | < ε.

Опр.2.(по Гейне). Число A называется пределом функции y=f(x) в точке a , если для любой последовательности {x n }ε X, x n ≠a nN, сходящийся к a , последовательность значений функции {f(x n)} сходится к числу A .

Теорема . Определение предела функции по Коши и по Гейне эквиваленты.

Доказательство . Пусть A=lim f(x) – предел функции y=f(x) по Коши и {x n } X, x n a nN – последовательность, сходящаяся к a , x n à a .

По данному ε > 0 найдем δ > 0 такое, что при 0 < |x-a | < δ, xX имеем |f(x) – A | < ε, а по этому δ найдем номер n δ =n(δ) такой, что при n>n δ имеем 0 < |x n -a | < δ

Но тогда |f(x n) – A | < ε, т.е. доказано, что f(x n)à A .

Пусть теперь число A есть теперь предел функции по Гейне, но A не является пределом по Коши. Тогда найдется ε o > 0 такое, что для всех nN существуют x n X, 0 < |x n -a| < 1/n, для которых |f(x n)-A| >= ε o . Это означает, что найдена последовательность {x n } X, x n ≠a nN, x n à a такая, что последовательность {f(x n)} не сходится к A .

Геометрический смысл предела lim f (x ) функции в точке х 0 таков: если аргументы х будут взяты в ε-окрестности точки х 0 , то соответствующие значения останутся в ε-окрестности точки.

Функции могут быть заданы на интервалах, примыкающих к точке x0 разными формулами, либо не определены на одном из интервалов. Для исследования поведения таких функций удобным является понятие левосторонних и правосторонних пределов.

Пусть функция f определена на интервале (a, x0). Число A называется пределом функции f слева

в точке x0 если0 0 x (a, x0) , x0 - x x0: | f (x) - A |

Предел функции f справа в точке x0 определяется аналогично.

Бесконечно малые функции обладают следующими свойствами:

1) Алгебраическая сумма любого конечного числа бесконечно малых в некоторой точке функций есть функция, бесконечно малая в той же точке.

2) Произведение любого конечного числа бесконечно малых в некоторой точке функций есть функция, бесконечно малая в той же точке.

3) Произведение бесконечно малой в некоторой точке функции на функцию ограниченную есть функция, бесконечно малая в той же точке.

Бесконечно малые в некоторой точке х0 функции a (x) и b (x) называются бесконечно малыми одного порядка ,

Нарушение ограничений, накладываемых на функции при вычислении их пределов, приводит к неопределенностям

Элементарными приемами раскрытия неопределенностей являются:

    сокращение на множитель, создающий неопределенность

    деление числителя и знаменателя на старшую степень аргумента (для отношения многочленов при)

    применение эквивалентных бесконечно малых и бесконечно больших

    использование двух замечательных пределов:

Первый замечательный преде л

Второй замечательный предел

Функции f(x) и g(x) называются эквивалентными при x→ a, если f(x): f(x) = f (x)g(x), где limx→ af (x) = 1.

Иначе говоря функции эквивалентны при x→ a, если предел их отношения при x→ a равен единице. Справедливы следующие соотношения, их еще называют асимптотическими равенствами :

sin x ~ x, x → 0

tg x ~ x, x → 0, arcsin x ~ x, x ® 0, arctg x~ x, x ® 0

e x -1~ x, x→ 0

ln (1+x)~ x, x→ 0

m -1~ mx, x→ 0

Непрерывность функции. Непрерывность элементарных функций. Арифметические операции над непрерывными функциями. Непрерывность сложной функции. Формулировка теорем Больцано-Коши и Вейерштрасса.

Разрывные функции. Классификация точек разрыва. Примеры.

Функция f(x) называется непрерывной в точке a, если

" U(f(a)) $ U(a) (f(U(a))М U(f(a))).

Непрерывность сложной функции

Теорема 2. Если функция u(x) непрерывна в точке х0, а функция f(u) непрерывна в соответствующей точке u0 = f(x0), то сложная функция f(u(x)) непрерывна в точке х0.

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 59.

Все элементарные функции непрерывны в каждой точке их областей определения.

Теорема Вейерштрасса

Пусть f - непрерывная функция, определённая на отрезке . Тогда для любого существует такой многочлен p с вещественными коэффициентами, что для любого x из выполнено условие

Теорема Больцано - Коши

Пусть дана непрерывная функция на отрезке Пусть такжеи без ограничения общности предположим, чтоТогда для любогосуществуеттакое, что f(c) = C.

Точка разрыва - значение аргумента, при котором нарушается непрерывность функции (см. Непрерывная функция). В простейших случаях нарушение непрерывности в некоторой точке а происходит так, что существуют пределы

при стремлении x к а справа и слева, но хотя бы один из этих пределов отличен от f (a). В этом случае а называют Точкой разрыва 1-го рода . Если при этом f (a + 0) = f (a -0), то разрыв называется устранимым, так как функция f (x) становится непрерывной в точке а, если положить f (a)= f(a+0)=f(a-0).

Разрывные функции, функции, имеющие разрыв в некоторых точках (см. Разрыва точка). Обычно у функций, встречающихся в математике, точки разрыва изолированы, но существуют функции, для которых все точки являются точками разрыва, например функция Дирихле: f (x) = 0, если х рационально, и f (x) = 1, если х иррационально. Предел всюду сходящейся последовательности непрерывных функций может быть Р. ф. Такие Р. ф. называются функциями первого класса по Бэру.

Производная, ее геометрический и физический смысл. Правила дифференцирования (производная суммы, произведения, частного двух функций; производная сложной функции).

Производная тригонометрических функций.

Производная обратной функции. Производная обратных тригонометрических функций.

Производная логарифмической функции.

Понятие о логарифмическом дифференцировании. Производная степенно-показательной функции. Производная степенной функции. Производная показательной функции. Производная гиперболических функций.

Производная функции, заданной параметрически.

Производная неявной функции.

Производной функции f(x) (f"(x0)) в точке x0 называется число, к которому стремится разностное отношение , стремящемся к нулю.

Геометрический смысл производной . Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Уравнение касательной к графику функции y=f(x) в точке x0:

Физический смысл производной.

Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Логарифмическое дифференцирование

Если требуется найти из уравнения, то можно:

а) логарифмировать обе части уравнения

б) дифференцировать обе части полученного равенства, где есть сложная функция от х,

.

в) заменить его выражением через х

Дифференцирование неявных функций

Пусть уравнение определяеткак неявную функцию от х.

а) продифференцируем по х обе части уравнения , получим уравнение первой степени относительно;

б) из полученного уравнения выразим .

Дифференцирование функций, заданных параметрически

Пусть функция задана параметрическими уравнениями ,

Тогда , или

Дифференциал. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Инвариантность формы первого дифференциала. Критерий дифференцируемости функции.

Производные и дифференциалы высших порядков.

Дифференциал (от лат. differentia - разность, различие) в математике, главная линейная часть приращения функции. Если функция y = f (x) одного переменного х имеет при х = х0 производную, то приращение Dy = f (x0 + Dx) - f (x0) функции f (x) можно представить в виде Dy = f" (x0) Dx + R,

где член R бесконечно мал по сравнению с Dх. Первый член dy = f" (x0) Dх в этом разложении и называется дифференциалом функции f (x) в точке x0.

ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

Пусть имеем функцию y=f(x), где x – независимая переменная. Тогда дифференциал этой функции dy=f"(x)dx также зависит от переменной x, причем от x зависит только первый сомножитель f"(x) , а dx=Δx от x не зависит (приращение в данной точке x можно выбирать независимо от этой точки). Рассматривая dy как функцию x, мы можем найти дифференциал этой функции.

Дифференциал от дифференциала данной функции y=f(x) называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d 2 y: d(dy)=d 2 y.

Найдем выражение второго дифференциала. Т.к. dx от x не зависит, то при нахождении производной его можно считать постоянным, поэтому

d 2 y = d(dy) = d = "dx = f ""(x)dx·dx = f ""(x)(dx) 2 .

Принято записывать (dx) 2 = dx 2 . Итак, d 2 у= f""(x)dx 2 .

Аналогично третьим дифференциалом или дифференциалом третьего порядка функции называется дифференциал от ее второго дифференциала:

d 3 y=d(d 2 y)="dx=f """(x)dx 3 .

Вообще дифференциалом n-го порядка называется первый дифференциал от дифференциала (n – 1)-го порядка: d n (y)=d(d n -1y)d n y = f (n)(x)dx n

Отсюда, пользуясь дифференциалами различных порядков, производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y0=f(x0) и ее производной y0" = f "(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δy можно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy≈dy или Δy≈f"(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)≈f"(x0)·Δx.

Откуда f(x) ≈ f(x0) + f"(x0)·Δx

Инвариантная форма первого дифференциала.

Доказательство:

1)

Основные теоремы о дифференцируемых функциях. Связь между непрерывностью и дифференцируемостью функции. Теорема Ферма. Теоремы Ролля, Лагранжа, Коши и их следствия. Геометрический смысл теорем Ферма, Ролля и Лагранжа.