Плазма Плазменная лампа , иллюстрирующая некоторые из наиболее сложных плазменных явлений, включая филаментацию. Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией после рекомбинации с ионами . Этот процесс приводит к излучению со спектром , соответствующим возбуждаемому газу.

Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере один электрон . Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями . Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году , возможно из-за ассоциации с плазмой крови . Ленгмюр писал:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Формы плазмы

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы , находящееся в «неплазменном» состоянии (жидком , твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём - и того меньше: всего 10 −15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазма).

Свойства и параметры плазмы

Определение плазмы

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:

  • Достаточная плотность : заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления - типичное свойство плазмы). Математически это условие можно выразить так:
, где - концентрация заряженных частиц.
  • Приоритет внутренних взаимодействий : радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Классификация

Плазма обычно разделяется на идеальную и неидеальную , низкотемпературную и высокотемпературную , равновесную и неравновесную , при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Температура

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать . Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры . Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = n i /(n i + n a), где n i - концентрация ионов, а n a - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме n e определяется очевидным соотношением: n e =<Z > n i , где <Z > - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества ». Примером может служить Солнце .

Плотность

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объёма, а число частиц в единице объёма). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов . В горячей плазме мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится , который определяется как отношение среднего межчастичного расстояния к радиусу Бора .

Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом . По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Отличия от газообразного состояния

Плазму часто называют четвертым состоянием вещества . Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:

Свойство Газ Плазма
Электрическая проводимость Крайне мала
К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр .
Очень высока
  1. Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
  2. Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоев и струй.
  3. Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее, чем гравитационные.
Число сортов частиц Один
Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации , а друг с другом взаимодействуют только на сравнительно небольших расстояниях.
Два, или три, или более
Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга - иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростям Максвелловское
Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей , согласно которому очень малая часть молекул газа имеют относительно большие скорости движения.
Может быть немаксвелловское

Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

Тип взаимодействий Бинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные.

Сложные плазменные явления

Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов - типичное свойство сложных систем , если использовать для их описания простые модели . Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц , из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана . Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)

Модели Particle-In-Cell являются более подробными, чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности электрического заряда и тока определяются путём суммирования числа частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число частиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек.

Базовые характеристики плазмы

Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона ; Z - зарядовое число; k - постоянная Больцмана; К - длина волны; γ - адиабатический индекс; ln Λ - Кулоновский логарифм.

Частоты

  • Ларморова частота электрона , угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • Ларморова частота иона , угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
  • плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
  • ионная плазменная частота:
  • частота столкновений электронов
  • частота столкновений ионов

Длины

  • Де-Бройлева длина волны электрона , длина волны электрона в квантовой механике:
  • минимальное расстояние сближения в классическом случае , минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
  • гиромагнитный радиус электрона , радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • гиромагнитный радиус иона , радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
  • размер скин-слоя плазмы , расстояние на которое электромагнитные волны могут проникать в плазму:
  • Радиус Дебая (длина Дебая) , расстояние на котором электрические поля экранируются за счёт перераспределения электронов:

Скорости

  • тепловая скорость электрона , формула для оценки скорости электронов при распределении Максвелла . Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
  • тепловая скорость иона , формула для оценки скорости ионов при распределении Максвелла :
  • скорость ионного звука , скорость продольных ионно-звуковых волн:
  • Альфвеновская скорость , скорость Альфвеновских волн :

Безразмерные величины

  • квадратный корень из отношения масс электрона и протона :
  • Число частиц в сфере Дебая:
  • Отношение Альфвеновской скорости к скорости света
  • отношение плазменной и ларморовской частот для электрона
  • отношение плазменной и ларморовской частот для иона
  • отношение тепловой и магнитной энергий
  • отношение магнитной энергии к энергии покоя ионов

Прочее

  • Бомовский коэффициент диффузии
  • Поперечное сопротивление Спитцера

© Использование материалов сайта только по согласованию с администрацией.

Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.

Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.

Состав плазмы крови

Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови , в которой нет коагулируемого белка (фактора I), он ушел в сгусток. Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови , мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).

Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):

плазма в общем составе крови

  • , которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны (до 50% от всех белков или 40 – 50 г/л), (≈ 2,7%) и фибриноген;
  • Другие вещества белковой природы (компоненты комплемента, углеводно-белковые комплексы и пр.);
  • Биологически активные вещества (ферменты, гемопоэтические факторы – гемоцитокины, гормоны, витамины);
  • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
  • Углеводы, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
  • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками ( , и др.);
  • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы ( , калий, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

Таким образом, плазма – это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.

Вода – источник Н 2 О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.

Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство – изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

Видео: что такое плазма крови


Функции плазмы крови обеспечивают белки

Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы, однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

  1. Транспортная (альбумин, глобулины);
  2. Дезинтоксикационная (альбумин);
  3. Защитная (глобулины – иммуноглобулины);
  4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин – протромбин);
  5. Регуляторная и координационная (альбумин, глобулины);

Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

белки плазмы крови

Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

Таблица 1. Основные белки плазмы крови

Основные белки плазмы Содержание в плазме (норма), г/л Главные представители и их функциональное назначение
Альбумины 35 - 55 «Строительный материал», катализатор иммунологических реакций, функции: транспорт, обезвреживание, регуляция, защита.
Альфа Глобулин α-1 1,4 – 3,0 α1-антитрипсин, α-кислый протеин, протромбин, транскортин, переносящий кортизол, тироксинсвязывающий белок, α1-липопротеин, транспортирующий жиры к органам.
Альфа Глобулин α-2 5,6 – 9,1 α-2-макроглобулин (главный в группе протеин) - участник иммунного ответа, гаптоглобин - образует комплекс со свободным гемоглобином, церулоплазмин – переносит медь, аполипопротеин В – транспортирует липопротеиды низкой плотности («плохой» холестерин»).
Бета Глобулины: β1+β2 5,4 – 9,1 Гемопексин (связывает гем гемоглобина, чем предотвращает удаление железа из организма), β-трансферрин (переносит Fe), компонент комплемента (участвует в иммунологических процессах), β-липопротеиды – «транспортное средство» для холестеринов и фосфолипидов.
Гамма глобулин γ 8,1 – 17,0 Естественные и приобретенные антитела (иммуноглобулины 5 классов – IgG, IgA, IgM, IgE, IgD), осуществляющие, главным образом, иммунную защиту на уровне гуморального иммунитета и создающие аллергостатус организма.
Фибриноген 2,0 – 4,0 Первый фактор свертывающей системы крови – FI.

Альбумины

Альбумины – это простые белки, которые по сравнению с другими протеинами:

структура альбумина

  • Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
  • Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
  • Не разрушаются при высушивании;
  • Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.

Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков – участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:

  1. Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
  2. Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
  3. Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
  4. Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
  5. Перенос углеводов;
  6. Связывание и перенос свободных жирных кислот – ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
  7. Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
  8. Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
  9. Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
  10. Катализ иммунологических реакций (антиген→антитело);
  11. Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
  12. Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).

Синтезируется альбумин в печени. Средний период полужизни данного белка составляет 2 – 2,5 недели, хотя одни «проживают» неделю, а другие – «работают» до 3 – 3,5 недель. Путем фракционирования белков из плазмы доноров получают ценнейший лечебный препарат (5%, 10% и 20% раствор), имеющий аналогичное название. Альбумин является последней фракцией в процессе, поэтому его производство требует немалых трудовых и материальных затрат, отсюда и стоимость лечебного средства.

Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.

Глобулины

Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.

разнообразие форм видов белков плазмы

В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.

Глобулины – весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:

  • Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
  • Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
  • α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
  • Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
  • Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
  • Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
  • Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).

Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).

Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.

Гамма-глобулины

Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).

Таблица 2. Классы иммуноглобулинов и их характеристика

Класс иммуноглобулинов (Ig) Содержание в плазме (сыворотке), % Основное функциональное назначение
G Ок. 75 Антитоксины, антитела, направленные против вирусов и грамположительных микробов;
A Ок. 13 Антиинсулярные АТ при сахарном диабете, антитела, направленные против капсульных микроорганизмов;
M Ок. 12 Направление – вирусы, грамотрицательные бактерии, форсмановские и вассермановские антитела.
E 0,0… Реагины, специфические АТ против различных (определенных) аллергенов.
D У эмбриона, у детей и взрослых, возможно, обнаружение следов Не учитываются, поскольку клинической значимости не имеют.

Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели – до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:

IgM – 0,55 – 3,5 г/л;

IgA – 0,7 – 3,15 г/л;

IgG – 0,7 – 3,5 г/л;

Фибриноген

Первый фактор свертывания (FI – фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.

Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.

Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.

Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.

Белки плазмы в качестве лабораторных показателей

В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.

Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.

Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).

Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном .

Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).

Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe 3+ , как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.

Исследование сыворотки с целью определения содержания (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).

Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, ).

Плазма крови – лечебное средство

Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).

В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.

Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.

Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.

Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении – здоровым, а его плазма должна иметь определенный титр антител (не менее 1: 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.

Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.

Видео: о сборе и использовании плазмы крови


Фракционирование белков плазмы в промышленных масштабах

Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.

Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:

  • На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
  • Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины ) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный , либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин . В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
  • Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
  • 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).

Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.

Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.

Кровь человека представлена 2 составляющими: жидкой основой или плазмой и клеточными элементами. Что такое плазма и каков ее состав? Какое функциональное предназначение имеет плазма? Разберем все по порядку.

Все о плазме

Плазма – это жидкость, образованная водой и сухими веществами. Она составляет основную часть крови – около 60 %. Благодаря плазме кровь имеет состояние жидкости. Хотя по физическим показателям (по плотности) плазма тяжелее воды.

Макроскопически плазма представляет собой прозрачную (иногда мутную) однородную жидкость светло-желтого цвета. Она собирается в верхнем участке сосудов, когда форменные элементы оседают. Гистологический анализ показывает, что плазма – межклеточное вещество жидкой части крови.

Мутной плазма становится после употребления человеком жирных продуктов.

Из чего состоит плазма?

Состав плазмы представлен:

  • Водой;
  • Солями и органическими веществами.
  • Белки;
  • Аминокислоты;
  • Глюкозу;
  • Гормоны;
  • Ферментные вещества;
  • Минералы (ионы Na, Cl).

Какой процент от объема плазмы составляет белок?

Это самый многочисленный компонент плазмы, он занимает 8 % всей плазмы. Плазма содержит белок различных фракций.

Основные из них:

  • Альбумины (5 %);
  • Глобулины (3%);
  • Фибриноген (принадлежит глобулинам, 0,4%).

Состав и задачи небелковых соединений в плазме

В плазме содержится:

  • Органические соединения, основу которых составляет азот. Представители: мочевая кислота, билирубин, креатин. Повышение количества азота сигнализирует о развитии азотомии. Это состояние возникает из-за проблем с выведением мочой продуктов обмена либо из-за активного разрушения белка и поступления большого количества азотистых веществ в организм. Последний случай характерен для сахарного диабета, голодания, ожогов.
  • Органические соединения, не содержащие азот. Сюда входит холестерин, глюкоза, молочная кислота. Компанию им составляют еще липиды. Все эти компоненты должны отслеживаться, так как они необходимы для поддержания полноценной жизнедеятельности.
  • Неорганические вещества (Ca, Mg). Ионы Na и Cl отвечают за поддержания постоянного Ph крови. Они также следят за осмотическим давлением. Ионы Ca принимают участие в сокращении мышц и стимулируют чувствительность нервных клеток.

Cостав плазмы крови

Альбумин

Альбумин в плазменной крови – основной компонент (более 50%). Он отличается небольшой молекулярной массой. Местом образования данного белка является печень.

Предназначение альбумина:

  • Переносит жирные кислоты, билирубин, лекарственные средства, гормоны.
  • Берет участие в обмене веществ и образовании белка.
  • Резервирует аминокислоты.
  • Формирует онкотическое давление.

По количеству альбумина медики судят о состоянии печени. Если содержание альбумина в плазме снижено, то это указывает на развитие патологии. Низкое содержание этого белка плазмы у детей увеличивает риск заболеть желтухой.

Глобулины

Глобулины представлены крупными молекулярными соединениями. Они вырабатываются печенью, селезенкой, тимусом.

Выделяют несколько видов глобулинов:

  • α – глобулины. Они взаимодействуют с тироксином и билирубином, связывая их. Катализируют образование белков. Отвечают за транспортировку гормонов, витаминов, липидов.
  • β – глобулины. Эти белки связывают витамины, Fe, холестерол. Переносят катионы Fe, Zn, стероидные гормоны, стерины, фосфолипиды.
  • γ – глобулины. Антитела или иммуноглобулины связывают гистамин и принимают участие в защитных иммунных реакциях. Они производятся печенью, лимфатической тканью, костным мозгом и селезенкой.

Насчитывают 5 классов γ – глобулинов:

  • IgG (около 80% всех антител). Для него характерна высокая авидность (соотношение антитела к антигену). Может проникать через плацентарный барьер.
  • IgM – первый иммуноглобулин, который образуется у будущего малыша. Белок отличается высокой авидностью. Он первый обнаруживается в крови после вакцинации.
  • IgA.
  • IgD.
  • IgE.

Фибриноген – растворимый белок плазмы. Он синтезируется печенью. Под влиянием тромбина белок преобразуется в фибрин – нерастворимую форму фибриногена. Благодаря фибрину в местах, где целостность сосудов была нарушена, образуется сгусток крови.

Остальные белки и функции

Незначительные фракции белков плазмы после глобулинов и альбуминов:

  • Протромбин;
  • Трансферрин;
  • Иммунные белки;
  • С-реактивный белок;
  • Тироксинсвязывающий глобулин;
  • Гаптоглобин.

Задачи этих и других белков плазмы сводятся к:

  • Поддержанию гомеостаза и агрегатного состояния крови;
  • Контролю за иммунными реакциями;
  • Транспортировке питательных веществ;
  • Активации процесса свертывания крови.

Функции и задачи плазмы

Для чего нужна плазма человеческому организму?

Ее функции разнообразны, но в основном они сводятся к 3 главным:

  • Транспортирование кровяных телец, питательных веществ.
  • Осуществление связи между всеми жидкими средами организма, которые располагаются вне кровеносной системы. Эта функция возможна, за счет способности плазмы проникать сквозь сосудистые стенки.
  • Обеспечение гемостаза. Подразумевается контроль над жидкостью, которая останавливается во время кровотечений и удалять образовавшийся тромб.

Применение плазмы в донорстве

Сегодня кровь в цельном виде не переливают: для терапевтических целей отдельно выделяют плазму и форменные компоненты. В пунктах сдачи крови чаще всего сдают кровь именно на плазму.


Система плазмы крови

Как получить плазму?

Получение плазмы из крови происходит с помощью центрифугирования. Метод позволяет отделить плазму от клеточных элементов с помощью специального аппарата, не повреждая их . Кровяные тельца возвращаются донору.

Процедура по сдаче плазмы имеет ряд преимуществ перед простой сдачей крови:

  • Объем кровопотери меньше, а значит, вреда здоровью наносится тоже меньше.
  • Кровь на плазму можно сдать вновь уже через 2 недели.

Существуют ограничения по сдаче плазмы. Так, донор может сдать плазму не более 12 раз за год.

Сдача плазмы занимает не больше 40 минут.

Плазма является источником такого важного материала, как сыворотка крови. Сыворотка – это та же плазма, но без фибриногена, однако с тем же набором антител. Именно они борются с возбудителями различных заболеваний. Иммуноглобулины способствуют скорейшему развитию пассивного иммунитета.

Чтобы получить сыворотку крови, стерильную кровь помещают в термостат на 1 час. Далее полученный сгусток крови отслаивают от стенок пробирки и определяют в холодильник на 24 часа. Полученную жидкость при помощи пастеровской пипетки добавляют в стерильный сосуд.

Патологии крови, влияющие на характер плазмы

В медицине выделяют несколько заболеваний, которые способны влиять на состав плазмы. Все они представляют угрозу для здоровья и жизни человека.

Основными из них являются:

  • Гемофилия. Это наследственная патология, когда наблюдается недостаток белка, который отвечает за свертываемость.
  • Заражение крови или сепсис. Явление, возникающее из-за попадания инфекции непосредственно в кровеносное русло.
  • ДВС-синдром. Патологическое состояние, причиной которого является шок, сепсис, тяжелые повреждения. Характеризуется нарушениями свертывания крови, которые приводят одновременно к кровотечению и образованию тромбов в мелких сосудах.
  • Глубокий венозный тромбоз. При заболевании наблюдается формирование тромбов в глубоких венах (преимущественно на нижних конечностях).
  • Гиперкоагуляция. У пациентов диагностируется чрезмерно высокая свертываемость крови. Вязкость последней увеличивается.

Плазмотест или реакция Вассермана – это исследование, выявляющее наличие антител в плазме к бледной трепонеме. По этой реакции вычисляется сифилис, а также эффективность его лечения.

Плазма – жидкость, имеющая сложный состав, играет важную роль в жизни человека. Она отвечает за иммунитет, свертываемость крови, гомеостаз.

Видео — cправочник здоровья (Плазма крови)

Что такое четвертое состояние вещества, чем оно отличается от трех других и как заставить его служить человеку.

Полтораста лет назад почти все химики и многие физики считали, что материя состоит лишь из атомов и молекул, которые объединяются в более-менее упорядоченные или же совсем неупорядоченные комбинации. Мало кто сомневался, что все или почти все вещества способны существовать в трех разных фазах - твердой, жидкой и газообразной, которые они принимают в зависимости от внешних условий. Но гипотезы о возможности других состояний вещества уже высказывались.

Эту универсальную модель подтверждали и научные наблюдения, и тысячелетия опыта обыденной жизни. В конце концов, каждый знает, что вода при охлаждении превращается в лед, а при нагревании закипает и испаряется. Свинец и железо тоже можно перевести и в жидкость, и в газ, их надо лишь нагреть посильнее. С конца XVIII века исследователи замораживали газы в жидкости, и выглядело вполне правдоподобным, что любой сжиженный газ в принципе можно заставить затвердеть. В общем, простая и понятная картина трех состояний вещества вроде бы не требовала ни поправок, ни дополнений.

Ученые того времени немало удивились бы, узнав, что твердое, жидкое и газообразное состояния атомно-молекулярного вещества сохраняются лишь при относительно низких температурах, не превышающих 10000°, да и в этой зоне не исчерпывают всех возможных структур (пример - жидкие кристаллы). Нелегко было бы и поверить, что на их долю приходится не больше 0,01% от общей массы нынешней Вселенной. Сейчас-то мы знаем, что материя реализует себя во множестве экзотических форм. Некоторые из них (например, вырожденный электронный газ и нейтронное вещество) существуют лишь внутри сверхплотных космических тел (белых карликов и нейтронных звезд), а некоторые (такие как кварк-глюонная жидкость) родились и исчезли в краткий миг вскоре после Большого взрыва. Однако интересно, что предположение о существовании первого из состояний, выходящих за рамки классической триады, было высказано все в том же ХIХ столетии, причем в самом его начале. В предмет научного исследования оно превратилось много позже, в 1920-х. Тогда же и получило свое название - плазма.

Во второй половине 70-х годов XIX века член Лондонского королевского общества Уильям Крукс, весьма успешный метеоролог и химик (он открыл таллий и чрезвычайно точно определил его атомный вес), заинтересовался газовыми разрядами в вакуумных трубках. К тому времени было известно, что отрицательный электрод испускает эманацию неизвестной природы, которую немецкий физик Ойген Голдштейн в 1876 году назвал катодными лучами. После множества опытов Крукс решил, что эти лучи есть не что иное, как частицы газа, которые после столкновения с катодом приобрели отрицательный заряд и стали двигаться в направлении анода. Эти заряженные частицы он назвал «лучистой материей», radiant matter .

Следует признать, что в таком объяснении природы катодных лучей Крукс не был оригинален. Еще в 1871 году сходную гипотезу высказал крупный британский инженер-электротехник Кромвелл Флитвуд Варли, один из руководителей работ по прокладке первого трансатлантического телеграфного кабеля. Однако результаты экспериментов с катодными лучами привели Крукса к очень глубокой мысли: среда, в которой они распространяются, – это уже не газ, а нечто совершенно иное. 22 августа 1879 года на сессии Британской ассоциации в поддержку науки Крукс заявил, что разряды в разреженных газах «так непохожи на все происходящее в воздухе или любом газе при обычном давлении, что в этом случае мы имеем дело с веществом в четвертом состоянии, которое по свойствам отличается от обычного газа в такой же степени, что и газ от жидкости».

Нередко пишут, что именно Крукс первым додумался до четвертого состояния вещества. В действительности эта мысль гораздо раньше осенила Майкла Фарадея. В 1819 году, за 60 лет до Крукса, Фарадей предположил, что вещество может пребывать в твердом, жидком, газообразном и лучистом состояниях, radiant state of matter . В своем докладе Крукс прямо сказал, что пользуется терминами, заимствованными у Фарадея, но потомки об этом почему-то забыли. Однако фарадеевская идея была все-таки умозрительной гипотезой, а Крукс обосновал ее экспериментальными данными.

Катодные лучи интенсивно изучали и после Крукса. В 1895 году эти эксперименты привели Вильяма Рёнтгена к открытию нового вида электромагнитного излучения, а в начале ХХ века обернулись изобретением первых радиоламп. Но круксовская гипотеза четвертого состояния вещества не вызвала интереса у физиков - скорее всего потому, что в 1897 году Джозеф Джон Томсон доказал, что катодные лучи представляют собой не заряженные атомы газа, а очень легкие частицы, которые он назвал электронами. Это открытие, казалось, сделало гипотезу Крукса ненужной.

Однако она возродилась, как феникс из пепла. Во второй половине 1920-х будущий нобелевский лауреат по химии Ирвинг Ленгмюр, работавший в лаборатории корпорации General Electric , вплотную занялся исследованием газовых разрядов. Тогда уже знали, что в пространстве между анодом и катодом атомы газа теряют электроны и превращаются в положительно заряженные ионы. Осознав, что подобный газ имеет множество особых свойств, Ленгмюр решил наделить его собственным именем. По какой-то странной ассоциации он выбрал слово «плазма», которое до этого использовали лишь в минералогии (это еще одно название зеленого халцедона) и в биологии (жидкая основа крови, а также молочная сыворотка). В своем новом качестве термин «плазма» впервые появился в статье Ленгмюра «Колебания в ионизованных газах», опубликованной в 1928 году. Лет тридцать этим термином мало кто пользовался, но потом он прочно вошел в научный обиход.

Классическая плазма - это ионно-электронный газ, возможно, разбавленный нейтральными частицами (строго говоря, там всегда присутствуют фотоны, но при умеренных температурах их можно не учитывать). Если степень ионизации не слишком мала (как правило, вполне достаточно одного процента), этот газ демонстрирует множество специфических качеств, которыми не обладают обычные газы. Впрочем, можно изготовить плазму, в которой свободных электронов не будет вовсе, а их обязанности возьмут на себя отрицательные ионы.

Для простоты рассмотрим лишь электронно-ионную плазму. Ее частицы притягиваются или отталкиваются в соответствии с законом Кулона, причем это взаимодействие проявляется на больших расстояниях. Именно этим они отличаются от атомов и молекул нейтрального газа, которые чувствуют друг друга лишь на очень малых дистанциях. Поскольку плазменные частицы пребывают в свободном полете, они легко смещаются под действием электрических сил. Для того чтобы плазма находилась в состоянии равновесия, необходимо, чтобы пространственные заряды электронов и ионов полностью компенсировали друг друга. Если это условие не выполняется, в плазме возникают электрические токи, которые восстанавливают равновесие (например, если в какой-то области образуется избыток положительных ионов, туда мгновенно устремятся электроны). Поэтому в равновесной плазме плотности частиц разных знаков практически одинаковы. Это важнейшее свойство называется квазинейтральностью.

Практически всегда атомы или молекулы обычного газа участвуют только в парных взаимодействиях - сталкиваются друг с другом и разлетаются в стороны. Иное дело плазма. Поскольку ее частицы связаны дальнодействующими кулоновскими силами, каждая из них находится в поле ближних и дальних соседей. Это означает, что взаимодействие между частицами плазмы не парное, а множественное - как говорят физики, коллективное. Отсюда следует стандартное определение плазмы - квазинейтральная система большого числа разноименных заряженных частиц, демонстрирующих коллективное поведение.

Плазма отличается от нейтрального газа и реакцией на внешние электрические и магнитные поля (обычный газ их практически не замечает). Частицы плазмы, напротив, чувствуют сколь угодно слабые поля и немедленно приходят в движение, порождая объемные заряды и электрические токи. Еще одна важнейшая особенность равновесной плазмы - зарядовое экранирование. Возьмем частицу плазмы, скажем, положительный ион. Он притягивает электроны, которые формируют облако отрицательного заряда. Поле такого иона ведет себя в соответствии с законом Кулона лишь в его окрестности, а на расстояниях, превышающих определенную критическую величину, очень быстро стремится к нулю. Этот параметр называется дебаевским радиусом экранирования - в честь голландского физика Питера Дебая, который описал этот механизм в 1923 году.

Легко понять, что плазма сохраняет квазинейтральность, лишь если ее линейные размеры по всем измерениям сильно превышают дебаевский радиус. Стоит отметить, что этот параметр возрастает при нагреве плазмы и падает по мере увеличения ее плотности. В плазме газовых разрядов по порядку величины он равен 0,1 мм, в земной ионосфере - 1 мм, в солнечном ядре - 0,01 нм.

В наши дни плазма используется в великом множестве технологий. Одни из них известны каждому (газосветные лампы, плазменные дисплеи), другие представляют интерес для узких специалистов (производство сверхпрочных защитных пленочных покрытий, изготовление микрочипов, дезинфекция). Однако наибольшие надежды на плазму возлагают в связи с работами по осуществлению управляемых термоядерных реакций. Это и понятно. Чтобы ядра водорода слились в ядра гелия, их надо сблизить на расстояние порядка одной стомиллиардной доли сантиметра - а там уже заработают ядерные силы. Такое сближение возможно лишь при температурах в десятки и сотни миллионов градусов - в этом случае кинетической энергии положительно заряженных ядер хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.

Правда, плазма на основе обычного водорода здесь не поможет. Такие реакции происходят в недрах звезд, но для земной энергетики они бесполезны, поскольку слишком мала интенсивность энерговыделения. Лучше всего использовать плазму из смеси тяжелых изотопов водорода дейтерия и трития в пропорции 1:1 (чисто дейтериевая плазма тоже приемлема, хотя даст меньше энергии и потребует более высоких температур для поджига).

Однако для запуска реакции одного нагрева маловато. Во-первых, плазма обязана быть достаточно плотной; во-вторых, попавшие в зону реакции частицы не должны покидать ее слишком быстро - иначе потеря энергии превысит ее выделение. Эти требования можно представить в виде критерия, который в 1955 году предложил английский физик Джон Лоусон. В соответствии с этой формулой произведение плотности плазмы на среднее время удержания частиц должно быть выше некоторой величины, определяемой температурой, составом термоядерного топлива и ожидаемым коэффициентом полезного действия реактора.

Легко увидеть, что существуют два пути выполнения критерия Лоусона. Можно сократить время удержания до наносекунд за счет сжатия плазмы, скажем, до 100–200 г/см 3 (поскольку плазма при этом не успевает разлететься, этот метод удержания называют инерционным). Физики отрабатывают эту стратегию с середины 1960-х годов; сейчас ее наиболее совершенной версией занимается Ливерморская национальная лаборатория. В этом году там начнут эксперименты по компрессии миниатюрных капсул из бериллия (диаметр 1,8 мм), заполненных дейтериево-тритиевой смесью, с помощью 192 ультрафиолетовых лазерных пучков. Руководители проекта полагают, что не позднее 2012 года они смогут не только поджечь термоядерную реакцию, но и получить положительный выход энергии. Возможно, аналогичная программа в рамках проекта HiPER (High Power Laser Energy Research ) в ближайшие годы будет запущена и в Европе. Однако даже если эксперименты в Ливерморе полностью оправдают возлагаемые на них ожидания, дистанция до создания настоящего термоядерного реактора с инерционным удержанием плазмы все равно останется очень большой. Дело в том, что для создания прототипа электростанции необходима очень скорострельная система сверхмощных лазеров. Она должна обеспечить такую частоту вспышек, зажигающих дейтериево-тритиевые мишени, которая в тысячи раз превысит возможности ливерморской системы, делающей не более 5–10 выстрелов в секунду. Сейчас активно обсуждаются различные возможности создания таких лазерных пушек, но до их практической реализации еще очень далеко.

Альтернативно можно работать с разреженной плазмой (плотностью в нанограммы на кубический сантиметр), удерживая ее в зоне реакции не менее нескольких секунд. В таких экспериментах вот уже более полувека применяют различные магнитные ловушки, которые удерживают плазму в заданном объеме за счет наложения нескольких магнитных полей. Самыми перспективными считают токамаки - замкнутые магнитные ловушки в форме тора, впервые предложенные А. Д. Сахаровым и И. Е. Таммом в 1950 году. В настоящее время в различных странах работает с дюжину таких установок, крупнейшие из которых позволили приблизиться к выполнению критерия Лоусона. Международный экспериментальный термоядерный реактор, знаменитый ITER, который построят в поселке Кадараш неподалеку от французского города Экс-ан-Прованс, - тоже токамак. Если все пойдет по плану, ITER позволит впервые получить плазму, удовлетворяющую лоусоновскому критерию, и поджечь в ней термоядерную реакцию.

«За последние два десятка лет мы добились огромного прогресса в понимании процессов, которые происходят внутри магнитных плазменных ловушек, в частности - токамаков. В целом мы уже знаем, как движутся частицы плазмы, как возникают неустойчивые состояния плазменных потоков и до какой степени увеличивать давление плазмы, чтобы ее все-таки можно было удержать магнитным полем. Были также созданы новые высокоточные методы плазменной диагностики, то есть измерения различных параметров плазмы, - рассказал «ПМ» профессор ядерной физики и ядерных технологий Массачусетского технологического института Йен Хатчинсон, который свыше 30 лет занимается токамаками. - К настоящему времени в крупнейших токамаках достигнуты мощности выделения тепловой энергии в дейтериево-тритиевой плазме порядка 10 мегаватт на протяжении одной-двух секунд. ITER превзойдет эти показатели на пару порядков. Если мы не ошибаемся в расчетах, он сможет выдавать не менее 500 мегаватт в течение нескольких минут. Если уж совсем повезет, энергия будет генерироваться вообще без ограничения времени, в стабильном режиме».

Волны в плазме

Коллективный характер внутриплазменных явлений приводит к тому, что эта среда гораздо более склонна к возбуждению различных волн, нежели нейтральный газ. Простейшие из них изучали еще Ленгмюр с его коллегой Леви Тонксом (более того, анализ этих колебаний сильно укрепил Ленгмюра в мысли, что он имеет дело с новым состоянием вещества). Пусть в каком-то участке равновесной плазмы немного изменилась электронная плотность — иначе говоря, группа соседних электронов сдвинулась из прежнего положения. Тут же возникнут электрические силы, возвращающие удравшие электроны в начальную позицию, которую те по инерции чуть-чуть проскочат. В итоге появится очаг колебаний, которые станут распространяться по плазме в виде продольных волн (в очень холодной плазме они могут быть и стоячими). Эти волны так и называются — ленгмюровскими.

Открытые Ленгмюром колебания накладывают ограничение на частоту электромагнитных волн, которые могут проходить через плазму. Она должна превышать ленгмюровскую частоту, в противном случае электромагнитная волна затухнет в плазме или же отразится, как свет от зеркала. Это и происходит с радиоволнами с длиной волны свыше примерно 20 м, которые не проходят сквозь земную ионосферу.

В намагниченной плазме могут рождаться и поперечные волны. Впервые их существование в 1942 году предсказал шведский астрофизик Ханнес Альфвен (в эксперименте их обнаружили 17 годами позже). Альфвеновские волны распространяются вдоль силовых линий внешнего магнитного поля, которые вибрируют, как натянутые струны (плазменные частицы, ионы и электроны, смещаются перпендикулярно этим линиям). Интересно, что скорость таких волн определяется только плотностью плазмы и напряженностью магнитного поля, однако не зависит от частоты. Волны Альфвена исполняют немалую роль в космических плазменных процессах — считается, например, что именно они обеспечивают аномальный нагрев солнечной короны, которая в сотни раз горячее солнечной атмосферы. Им сродни и свистящие атмосферики, волновые хвосты грозовых разрядов, которые создают радиопомехи. В плазме возникают и волны более сложной структуры, обладающие как продольными, так и поперечными компонентами.

Профессор Хатчинсон также подчеркнул, что ученые сейчас хорошо понимают характер процессов, которые должны происходить внутри этого огромного токамака: «Мы даже знаем условия, при которых плазма подавляет свои собственные турбулентности, а это очень важно для управления работой реактора. Конечно, необходимо решить множество технических задач - в частности, завершить разработку материалов для внутренней облицовки камеры, способных выдержать интенсивную нейтронную бомбардировку. Но с точки зрения физики плазмы картина достаточно ясна - во всяком случае мы так считаем. ITER должен подтвердить, что мы не ошибаемся. Если все так и будет, придет черед и токамаку следующего поколения, который станет прототипом промышленных термоядерных реакторов. Но сейчас об этом говорить еще рано. А пока мы рассчитываем, что ITER начнет работать в конце этого десятилетия. Скорее всего, он сможет генерировать горячую плазму никак не раньше 2018 года - во всяком случае по нашим ожиданиям». Так что с точки зрения науки и техники у проекта ITER неплохие перспективы.

Плазменные чудеса

Где только не используется плазма в фантастических романах - от оружия и двигателей до плазменных форм жизни. Реальные профессии плазмы, впрочем, выглядят не менее фантастически.

Плазменное оружие - наиболее часто встречающееся применение плазмы в фантастике. Гражданские применения значительно скромнее: обычно речь идет о плазменных двигателях. Такие двигатели существуют и в реальности, «ПМ» неоднократно писала о них (№2, 2010 , №12, 2005). Между тем другие возможности использования плазмы, о которых нам рассказал глава филадельфийского Дрекселовского института плазмы Александр Фридман, в обычной жизни выглядят не менее, а то и более фантастично.

Использование плазмы позволяет решать задачи, которые еще не так давно решению не поддавались. Возьмем, к примеру, переработку угля или биомассы в горючий газ, богатый водородом. Немецкие химики научились этому еще в середине 30-х годов прошлого века, что позволило Германии во время Второй мировой войны создать мощную индустрию по выпуску синтетического горючего. Однако это чрезвычайно затратная технология, и в мирное время она неконкурентоспособна.

По словам Александра Фридмана, в настоящее время уже созданы установки для генерации мощных разрядов холодной плазмы, в которой температура ионов не превышает сотен градусов. Они дают возможность дешево и эффективно получать из угля и биомассы водород для синтетического горючего или же заправки топливных элементов. Причем установки эти достаточно компактны, чтобы их можно было разместить на автомобиле (на стоянке, например, для работы кондиционера не нужно будет включать двигатель - энергию дадут топливные элементы). Отлично работают и полупромышленные пилотные установки для переработки угля в синтез-газ с помощью холодной плазмы.

«В упомянутых процессах углерод рано или поздно окисляется до двуокиси и моноокиси, - продолжает профессор Фридман. - А вот лошади получают энергию, перерабатывая овес и сено в навоз и выделяя лишь небольшое количество углекислого газа. В их пищеварительной системе углерод окисляется не полностью, а лишь до субоксидов, в основном до С 3 О 2 . Эти вещества лежат в основе полимеров, из которых состоит навоз. Конечно, в этом процессе выделяется приблизительно на 20% меньше химической энергии, чем при полном окислении, но зато практически отсутствуют парниковые газы. В нашем институте мы сделали экспериментальную установку, которая с помощью холодной плазмы как раз и способна перерабатывать бензин в такой вот продукт. Это настолько впечатлило большого поклонника автомобилей - принца Монако Альберта II, что он заказал нам автомобиль с такой силовой установкой. Правда, пока только игрушечный, которому к тому же нужно дополнительное питание - батарейки для конвертера. Такая машинка будет ездить, выбрасывая что-то вроде катышков сухого помета. Правда, для работы конвертера нужна батарейка, которая сама по себе гоняла бы игрушку несколько быстрее, но ведь, как говорится, лиха беда начало. Я могу себе представить, что лет через десять появятся настоящие автомобили с плазменными конверторами бензина, которые будут ездить, не загрязняя атмосферу».


Одно из чрезвычайно перспективных применений холодной плазмы - в медицине. Давно известно, что холодная плазма порождает сильные окислители и поэтому отлично подходит для дезинфекции. Но для ее получения нужны напряжения в десятки киловольт, с ними лезть в человеческий организм опасно. Однако, если эти потенциалы генерируют токи небольшой силы, никакого вреда не будет. «Мы научились получать в холодной плазме очень слабые однородные разрядные токи под напряжением в 40 киловольт, - говорит профессор Фридман.– Оказалось, что такая плазма быстро заживляет раны и даже язвы. Сейчас этот эффект изучается десятками медицинских центров в различных странах. Уже выяснилось, что холодная плазма может превратиться в орудие борьбы с онкологическими заболеваниями - в частности, с опухолями кожи и мозга. Конечно, пока опыты производятся исключительно на животных, но в Германии и России уже получено разрешение на клинические испытания нового метода лечения, а в Голландии делают очень интересные эксперименты по плазменному лечению воспаления десен. Кроме того, около года назад мы смогли зажечь холодный разряд прямо в желудке живой мыши! При этом выяснилось, что он хорошо работает для лечения одной из тяжелейших патологий пищеварительного тракта - болезни Крона. Так что сейчас на наших глазах рождается плазменная медицина - совершенно новое медицинское направление».

Состояние плазмы практически единогласно признается научным сообществом как четвертое агрегатное состояние. Вокруг данного состояния даже образовалась отдельная наука, изучающая это явление – физика плазмы. Состояние плазмы или ионизованный газ представляется как набор заряженных частиц, суммарный заряд которых в любом объеме системы равен нулю – квазинейтральный газ.

Также существует газоразрядная плазма, которая возникает при газовом разряде. При прохождении электрического тока через газ, первый ионизирует газ, ионизированные частицы которого являются переносчиками тока. Так в лабораторных условиях получают плазму, степень ионизации которой можно контролировать при помощи изменения параметров тока. Однако, в отличие от высокотемпературной плазмы, газоразрядная нагревается за счет тока, и потому быстро охлаждается при взаимодействии с незаряженными частицами окружающего газа.

Электрическая дуга — ионизированный квазинейтральный газ

Свойства и параметры плазмы

В отличие от газа вещество в состоянии плазмы обладает очень высокой электрической проводимостью. И хотя суммарный электрический заряд плазмы обычно равен нулю, она значительно подвержена влиянию магнитного поля, которое способно вызывать течение струй такого вещества и разделять его на слои, как это наблюдается на Солнце.

Спикулы — потоки солнечной плазмы

Другое свойство, которое отличает плазму от газа – коллективное взаимодействие. Если частицы газа обычно сталкиваются по двое, изредка лишь наблюдается столкновение трех частиц, то частицы плазмы, в силу наличия электромагнитных зарядов, взаимодействуют одновременно с несколькими частицами.

В зависимости от своих параметров плазму разделяют по следующим классам:

  • По температуре: низкотемпературная – менее миллиона кельвин, и высокотемпературная – миллион кельвин и более. Одна из причин существования подобного разделения заключается в том, что лишь высокотемпературная плазма способна участвовать в термоядерном синтезе.
  • Равновесная и неравновесная. Вещество в состоянии плазмы, температура электронов которого значительно превышает температуру ионов, называется неравновесной. В случае же когда температура электронов и ионов одинаковая говорят о равновесной плазме.
  • По степени ионизации: высокоионизационная и плазма с низкой степенью ионизации. Дело в том, что даже ионизированный газ, 1% частиц которого ионизированы, проявляет некоторые свойства плазмы. Однако, обычно плазмой называют полностью ионизированный газ (100%). Примером вещества в таком состоянии является солнечное вещество. Степень ионизации напрямую зависит от температуры.

Применение

Наибольшее применение плазма нашла в светотехнике: в газоразрядных лампах, экранах и различных газоразрядных приборах, вроде стабилизатора напряжения или генератора сверхвысокочастотного (микроволнового) излучения. Возвращаясь к освещению – все газоразрядные лампы основаны на протекании тока через газ, что вызывает ионизацию последнего. Популярный в технике плазменный экран представляет собой набор газоразрядных камер, заполненных сильно ионизированным газом. Электрический разряд, возникающий в этом газе порождает ультрафиолетовое излучение, которое поглощается люминифором и далее вызывает его свечение в видимом диапазоне.

Вторая область применения плазмы – космонавтика, а конкретнее – плазменные двигатели. Такие двигатели работают на основе газа, обычно ксенона, который сильно ионизируется в газоразрядной камере. В результате этого процесса тяжелые ионы ксенона, которые к тому же ускоряются магнитным полем, образуют мощный поток, создающий тягу двигателя.

Наибольшее же надежды возлагаются на плазму – как на «топливо» для термоядерного реактора. Желая повторить процессы синтеза атомных ядер, протекающие на Солнце, ученые работают над получением энергии синтеза из плазмы. Внутри такого реактора сильно разогретое вещество (дейтерий, тритий или даже ) находится в состоянии плазмы, и в силу своих электромагнитных свойств, удерживается за счет магнитного поля. Формирование более тяжелых элементов из исходной плазмы происходит с выделением энергии.

Также плазменные ускорители используются в экспериментах по физике высоких энергий.

Плазма в природе

Состояние плазмы – наиболее распространенная форма вещества, на которую приходиться около 99% массы всей Вселенной. Вещество любой звезды – это сгусток высокотемпературной плазмы. Помимо звезд, существует и межзвездная низкотемпературная плазма, которая заполняет космическое пространство.

Ярчайшим примером является ионосфера Земли, которая представляет собой смесь нейтральных газов (кислорода и азота), а также сильно ионизированного газа. Ионосфера образуется как следствие облучения газа солнечным излучением. Взаимодействие же космического излучения с ионосферой приводит к полярному сиянию.

На Земле плазму можно наблюдать в момент удара молнии. Электрический искровой заряд, протекающий в атмосфере, сильно ионизирует газ на своем пути, образуя тем самым плазму. Следует отметить, что «полноценная» плазма, как набор отдельных заряженных частиц, образуется при температурах более 8 000 градусов Цельсия. По этой причине утверждение, что огонь (температура которого не превышает 4 000 градусов) – это плазма – лишь популярное заблуждение.