Фазой называется термодинамическое равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Переход вещества из одной фазы в другую – фазовый переход - всегда связан с качественными изменениями свойств тела. Примером фазовых переходов могут служить изменения агрегатного состояния. Но понятие «фазовый переход» шире, т.к. оно включает и переход вещества из одной модификации в другую при сохранении агрегатного состояния (полиморфизм), например, превращение алмаза в графит.

Различают два вида фазовых переходов:

Фазовый переход 1 рода – сопровождается поглощением или выделением теплоты, изменением объема и протекает при постоянной температуре. Примеры: плавление, кристаллизация, испарение, сублимация (возгонка) и др.

Фазовые переходы 2 рода – протекают без выделения или поглощения тепла, с сохранением величины объема, но скачкообразным изменением теплоемкости. Примеры: переход ферромагнитных минералов при определенных значениях давления и температуры в парамагнитное состояние (железо, никель); переход некоторых металлов и сплавов при температуре близкой к 0 0 К в сверхпроводящее состояние (ρ = 0 Ом∙м) и др.

Для химически однородного вещества понятие фазы совпадает с понятием агрегатное состояние. Рассмотрим для такой системы фазовые превращения, используя для наглядности диаграмму состояния. На ней в координатах р и Т задается зависимость между температурами фазовых переходов и давлением. Эти зависимости в виде кривых испарения (ОИ), плавления (ОП) и сублимации (ОС) и образуют диаграмму состояния.

Точка О пересечения кривых определяет условия (значения Т и р), при которых все три агрегатные состояния вещества находятся в термодинамическом равновесии.

По этой причине она называется тройной точкой. Например, тройная точка воды является одной из реперных точек температурной шкалы Цельсия (0 0 С). Как следует из уравнения Клапейрона – Клаузиуса характер зависимости Т =f(р) для перехода твердое тело – жидкость (кривые ОП) может быть разным: Если вещество при переходе в жидкую фазу увеличивает объем (вода, висмут, германий, чугун …), то ход этой зависимости представлен на рис. 2а. Для веществ, уменьшающих объём при переходе в жидкую фазу, зависимость имеет вид показанный на рис. 2б.

Кривая испарения заканчивается критической точкой – К . Как видно из диаграммы, существует возможность непрерывного перехода жидкости в газообразную фазу без пересечения кривой испарения, т.е. без присущих такому переходу фазовых превращений.

При давлении меньшим, чем р тр.тчк. , вещество может существовать только в двух фазах: твердой и газообразной. Причем, при температурах, меньших Т тр.тчк. , возможен переход из твердого состояния в газ минуя жидкую фазу. Такой процесс называется сублимацией или возгонкой. Удельная теплота сублимации

τ суб = λ пл +r исп

ТВЕРДЫЕ ТЕЛА.

Твердое тело, агрегатное состояние вещества, для которого характерно наличие значительных сил межмолекулярного взаимодействия, стабильность формы и объема. Тепловое движение частиц твердого тела представляет собой небольшие по амплитуде колебания около положений равновесия. Различают кристаллическое и аморфное строение твердых тел.

Характерной особенностью микроструктуры кристаллов является пространственная периодичность их внутренних электрических полей и повторяемость в расположении кристаллообразующих частиц – атомов, ионов и молекул (дальний порядок). Частицы чередуются в определенном порядке вдоль прямых линий, которые называются узловыми. В любом плоском сечении кристалла две пересекающихся системы таких линий образуют совокупность совершенно одинаковых параллелограммов, которые плотно, без зазоров покрывают плоскость сечения. В пространстве пересечение трех некомпланарных систем таких линий образует пространственную сетку, которая разбивает кристалл на совокупность совершенно одинаковых параллелепипедов. Точки пересечения линий, образующих кристаллическую решетку называются узлами. Расстояния между узлами вдоль какого-то направления называется трансляциями или периодами решетки. Параллелепипед, построенный на трех некомпланарных трансляциях, называется элементарной ячейкой или параллелепипедом повторяемости решетки. Важнейшим геометрическим свойством кристаллических решеток является симметрия в расположении частиц по отношению к определенным направлениям и плоскостям. По этой причине, хотя и существует несколько способов выбора элементарной ячейки, для данной кристаллической структуры, выбирают ее так, чтобы она соответствовала симметрии решетки.

Существует два признака, по которым классифицируются кристаллы: а) кристаллографический – по геометрии кристаллической решетки и б) физический – по характеру взаимодействия частиц, расположенных в узлах кристаллической решетки и их природе.

Геометрия кристаллических решеток и их элементарных ячеек определяется количеством элементов симметрии, использованных при построении данной решетки. Число возможных видов симметрии ограничено. Русский кристаллограф Е.С. Федоров (1853 – 1919) показал, что существует всего 230 возможных комбинаций элементов симметрии, которые путем параллельного переноса, отражения и вращения обеспечивают плотную, т.е. без зазоров и щелей упаковку элементарных ячеек в пространстве. Браве показал, что существует всего 14 типов решеток, которые различаются по виду переносной симметрии. Различают примитивные (простые), базоцентрированные, обьемноцентрированные и гранецентрированные решетки Браве. По форме ячейки в зависимости от углов между ее гранями α, β и γ и соотношением между длиной ребер а, б и с эти 14 типов решеток образуют семь кристаллических систем (сингоний): кубическую, гексогональную, тетрагональную, тригональную или ромбоэдрическую, ромбическую, моноклинную и тригональную.

По характеру взаимодействия частиц, расположенных в узлах кристаллической решетки и их природе кристаллы делятся на четыре типа: ионные, атомные, металлические и молекулярные

Ионные – в узлах кристаллической решетки располагаются ионы противоположных знаков; взаимодействие обусловлено электростатическими силами притяжения (ионная или гетерополярная связь).

Атомные – в узлах кристаллической решетки располагаются нейтральные атомы, удерживающиеся в узлах гомеополярными, или ковалентными связями.

Металлические – в узлах кристаллической решетки располагаются положительные ионы металла; свободные электроны образуют, так называемый, электронный газ, который и обеспечивает связь ионов.

Молекулярные – в узлах кристаллической решетки располагаются нейтральные молекулы, силы взаимодействия между которыми обусловлены незначительным смещением электронного облака атома (поляризационные или ван-дер-ваальсовские силы).

Кристаллические тела можно разделить на две группы: монокристаллы и поликристаллы. Для монокристаллов наблюдается единая кристаллическая решетка в объеме всего тела. И хотя внешняя форма монокристаллов одного вида может быть разной, углы между соответствующими гранями будут всегда одинаковыми. Характерной особенностью монокристаллов является анизотропия механических, тепловых, электрических, оптических и др. свойств.

Монокристаллы нередко встречаются в естественном состоянии в природе. Например, большинство минералов – хрусталь, изумруды, рубины. В настоящее время в производственных целях многие монокристаллы выращивают искусственно из растворов и расплавов - рубины, германий, кремний, арсенид галия.

Один и тот же химический элемент может образовать несколько, отличающихся по геометрии, кристаллических структур. Это явление получило название - полиморфизма. Например, углерод – графит и алмаз; лед пять модификаций и др.

Правильная внешняя огранка и анизотропия свойств, как правило, не проявляются для кристаллических тел. Это объясняется тем, что кристаллические твердые тела обычно состоят из множества беспорядочно ориентированных мелких кристалликов. Такие твердые тела называются поликристаллическими. Связано это с механизмом кристаллизации: при достижении необходимых для этого процесса условий, очаги кристаллизации одновременно возникают во множестве мест исходной фазы. Зародившиеся кристаллы расположены и ориентированы друг по отношению к другу совершенно хаотически. По этой причине по окончании процесса мы получаем твердое тело в виде конгломерата сросшихся мелких кристалликов – кристаллитов.

ДЕФФЕКТЫ В КРИСТАЛАХ.

Реальные кристаллы обладают рядом нарушений идеальной структуры, которые называются дефектами кристаллов:

а) точечные дефекты

    дефекты Шотки (незанятые частицами узлы);

    дефекты Френкеля (смещение частиц из узлов в междуузлия);

    примеси (внедренные чужеродные атомы);

б) линейные – дислокации краевые и винтовые локальные нарушения в регулярности расположения частиц, из-за недостроенности отдельных атомных плоскостей, или в последовательности их застройки;

в) плоскостные – границы между зеркалами, ряды линейных дислокаций.

АМОРФНЫЕ ТВЕРДЫЕ ТЕЛА.

Аморфные твердые тела по многим своим свойствам и главным образом по микроструктуре следует рассматривать как сильно переохлажденные жидкости с очень высоким коэффициентом вязкости. С энергетической точки зрения различие между кристаллическими и аморфными твердыми телами хорошо прослеживаются в процессе отвердевания и плавления. Кристаллические тела имеют точку плавления – температуру, когда вещество устойчиво существует в двух фазах – твердой и жидкой (рис1). Переход молекулы твердого тела в жидкость означает, что она приобретает дополнительно три степени свободы поступательного движения. Т.о. единица массы вещества при Т пл. в жидкой фазе имеет большую внутреннюю энергию, чем такая же масса в твердой фазе. Кроме того, меняется расстояние между частицами. Поэтому в целом количество теплоты необходимое для превращения единицы массы кристалла в жидкость будет:

λ = (U ж -U k) + P (V ж -V k),

где λ – удельная теплота плавления (кристаллизации), (U ж -U k) – разность внутренних энергий жидкой и кристаллической фаз, Р – внешнее давление, (V ж -V k) – разность удельных объемов. Согласно уравнению Клайперона - Клаузиуса температура плавления зависит от давления:

.

Видно, что если (V ж -V k)> 0, то > 0, т.е. с ростом давления температура плавления повышается. Если же объем вещества при плавлении уменьшается (V ж -V k)< 0 (вода, висмут), то рост давления приводит к понижению Т пл.

У аморфных тел теплота плавления отсутствует. Нагревание приводит к постепенному увеличению скорости теплового движения и уменьшению вязкости. На графике процесса имеется точка перегиба, которую условно называют температурой размягчения.

Однокомпонентная гетерогенная система представляет собой одно вещество, находящееся в разных агрегатных состояниях или полиморфных модификациях. В соответствии с правилом фаз Гиббса, при К = 1 С = 3  Ф. Учитывая, что по физическому смыслу С  0, очевидно Ф  3, т.е. число одновременно существующих фаз в однокомпонентной гетерогенной системе может быть не более трех. При отсутствии полиморфизма это жидкая, твердая и парообразная фазы. Двухфазные равновесия, возможные в такой системе,  это «жидкость – пар», «твердое тело – пар» и «твердое тело – жидкость». Каждое из этих равновесий характеризуется определенной взаимосвязью параметров Р и Т, устанавливаемой уравнениями Клапейрона - Клаузиуса для соответствующих процессов: испарения, возгонки и плавления.

Указанные взаимосвязи могут быть установлены и эмпирически, методами физико-химического анализа. Их изображают графически в осях координат «давление-температура», в виде кривых Р = f(T).

Графическое изображение состояний равновесия фаз при разных Р и Т называется диаграммой состояния, или фазовой диаграммой . Рассмотрим в качестве примера фазовые диаграммы воды и серы.

4.5.1. Фазовая диаграмма воды

Состояние воды исследовано в широком интервале температур и давлений. Известно, что при высоких давлениях лёд может находиться в различных кристаллических модификациях, в зависимости от физических условий (Р и Т). Это явление, названное полиморфизмом, присуще и многим другим веществам. Мы рассмотрим диаграмму состояния воды при невысоких давлениях (до 2000 атм).

Диаграмма имеет три поля фаз (рис. 4.1 ):

    АОВ поле жидкости,

    ВОС (под кривой) поле ненасыщенного пара,

    АОС поле твердой фазы.

Рис. 4.1. Фазовая диаграмма воды

В любой точке поля система однофазна и бивариантна (К = 1; Ф = 1; С = 2), т.е. в определенных пределах можно менять температуру и давление без изменения количества фаз и их природы. Например, точка 1 соответствует жидкой воде, которая имеет параметры t 1 и Р 1 .

Если в системе в равновесии находятся две фазы, то К = 1; Ф = 2; С = 1, т.е. система моновариантна. Это значит, что один параметр можно изменять произвольно в некоторых пределах, а другой должен изменяться в зависимости от первого. Эта зависимость выражается кривой Р = f(Т): ОВ кривая испарения (или конденсации); ОСкривая возгонки (или сублимации); АОкривая плавления (или затвердевания). Например, точка 2 характеризует равновесную систему, в которой при температуре t 2 и давлении Р 2 находятся в равновесии вода и насыщенный водяной пар. Если Р 2 = 1 атм, то t 2 называется нормальной температурой кипения.

Кривая испарения воды ОВ обрывается в критической точке (В) при t= 374С и Р = 218 атм. Выше этой точки жидкая и парообразная вода не различимы по свойствам. Это установлено Д.И. Менделеевым в 1860 г.

Кривая плавления льда АО при давлениях до 2047 атм имеет левый наклон, что соответствует условию V ф.п. < 0 (мольный объем льда > мольного объема воды). Такой лед легче воды, он плавает на воде, поэтому в природных водоемах, не промерзающих до дна, сохраняются живые организмы. При более высоких давлениях лед переходит в более плотные модификации, тогда кривая плавления АО наклонена вправо. Известно семь кристаллических модификаций льда, из них шесть имеют плотность выше плотности жидкой воды. Последняя из них появляется при давлении 21680 атм. Превращение одной формы льда в другую является энантиотропным переходом (см. далее о полиморфизме).

Пунктирная кривая ОD(продолжение ОВ) характеризует метастабильное равновесие: переохлажденная вода ↔ насыщенный пар.

Метастабильными называются равновесия, при которых имеются все внешние признаки равновесия фаз, но изобарный потенциал системы не достиг минимального абсолютного значения и может уменьшаться далее. Вода, кристаллизуясь на примесях, перейдет в лед. Точка Отройная точка. Ее координаты для воды в отсутствие воздуха: Р = 4,579 мм рт. ст., t= 0,01C. В присутствии воздуха при 1 атм три фазы находятся в равновесии при 0ºС. В этом случае общее давление равно 1 атм, но парциальное давление водяного пара составляет 4,579 мм рт. ст. Понижение температуры замерзания при этом на 0,01º вызвано двумя причинами: растворимостью воздуха в воде (см. раздел «понижение температуры замерзания растворов») и влиянием общего давления на температуру замерзания жидкостей (повышение общего давления в системе понижает её). Это единственная точка, в которой в равновесии находятся все три фазы: вода, лед и пар. В этой точке система инвариантна: С = 0.

На рис 3.3 представлена фазовая диаграмма в P–Vкоординатах, а на рис.3.4 - вT–Sкоординатах.

Рис.3.3. Фазовая Р-Vдиаграмма Рис.3.4. Фазовая Т-S диаграмма

Обозначения :

т + ж – область равновесного сосуществования твердой и жидкой

т + п – область равновесного сосуществования твердой и паро-

ж + п – область равновесного сосуществования жидкой и паровой

Если на Р – Т диаграмме области двухфазных состояний изображались кривыми, то P–VиT–Sдиаграммах – это некоторые площади.

Линия AKFназывается пограничной кривой. Она в свою очередь разделяется на нижнюю пограничную кривую (участок АК) и верхнюю пограничную кривую (участокKF).

На рис.3.3 и 3.4 линия BF, где смыкаются области трех двухфазных состояний, - это растянутая тройная точка Т с рис3.1 и 3.2.

При плавлении вещества, которое, как и парообразование, протекает при постоянной температуре, образуется равновесная двухфазная смесь твердой и жидкой фаз. Значения удельного объема жидкой фазы в составе двухфазной смеси снимаются на рис3.3 с кривой АN, а значения удельного объема твердой фазы – с кривой ВЕ.

Внутри области, ограниченной контуром AKF, вещество представляет собой смесь двух фаз: кипящей жидкости (Ж) и сухого насыщенного пара (П).

Вследствие аддитивности объема удельный объем такой двухфазной смеси определяется по формуле

удельная энтропия:

    1. Особые точки фазовых диаграмм

      1. Тройная точка

Тройная точка – это точка, в которой сходятся кривые равновесия трех фаз. На рис.3.1 и 3.2 – это точка Т.

Некоторые чистые вещества, например, сера, углерод и др., в твердом агрегатном состоянии имеют несколько фаз (модификаций).

В жидком и газообразном состояниях модификации отсутствуют.

В соответствии с уравнением (1.3) в однокомпонентной термодеформационной системе одновременно находиться в равновесии могут не более трех фаз.

Если у вещества в твердом состоянии существуют несколько модификаций, то общее количество фаз вещества в сумме превышает три и такое вещество должно иметь несколько тройных точек. В качестве примера на рис.3.5 приведена фазовая Р –Т диаграмма вещества, имеющего две модификации в твердом агрегатном состоянии.

Рис.3.5. Фазовая Р-Т диаграмма

вещества с двумя кристалличес-

кими фазами

Обозначения :

I– жидкая фаза;

II– газообразная фаза;

III 1 иIII 2 – модификации в твердом агрегатном состоянии

(кристаллические фазы)

В тройной точке Т 1 в равновесии находятся: газообразная, жидкая и кристаллическая фазаIII 2. Эта точка являетсяосновной тройной точкой.

В тройной точке Т 2 в равновесии находятся: жидкая и две кристаллические фазы.

В тройной точке Т 3 в равновесии находятся газообразная и две кристаллические фазы.

У воды известно пять кристаллических модификаций (фаз): III 1, III 2 ,III 3 ,III 5 ,III 6 .

Обычный лед – это кристаллическая фаза III 1 , а остальные модификации образуются при очень больших давлениях, составляющих тысячи МПа.

Обычный лед существует до давления 204,7 МПа и температуры – 22 0 С.

Остальные модификации (фазы) – это лед плотнее воды. Один из этих льдов – « горячий лед » наблюдался при давлении 2000 МПа вплоть до температуры + 80 0 С.

Термодинамические параметры основной тройной точки воды следующие:

Т тр = 273,16 К = 0,01 0 С;

Р тр = 610,8 Па;

V тр = 0,001 м 3 /кг.

Аномалия кривой плавления (
) существует только для обычного льда.

Введение

Фазовые диаграммы состояний являются неотъемлемой частью любого обсуждения свойств материалов в тех случаях, когда речь идет о взаимодействии различных материалов. Особенно фазовые диаграммы состояния важны в микроэлектронике, т.к. для изготовления выводов и пассивирующих слоев там приходится использовать большой набор различных материалов. В производстве интегральных микросхем в тесном контакте с различными металлами находится кремний, особое внимание уделим тем фазовым диаграммам, в которых в качестве одной из компонент фигурирует именно кремний.

В данном реферате рассмотрено какие бывают типы фазовых диаграмм, понятие фазового перехода, твердой растворимости, самые важные системы веществ для микроэлектроники.

Типы фазовых диаграмм

Однофазовые диаграммы состояний - это графики, на которых в зависимости от давления, объем и температуры изображают фазовое состояние только одного материала. Обычно не принято рисовать трехмерный график на двумерной плоскости - изображают его проекцию на плоскость температура - давление. Пример однофазной диаграммы состояний дан на рис. 1.

Рис. 1.

На диаграмме четко разграничены области, в которых материал может существовать только в одном фазовом состоянии - как твердое тело, жидкость или газ. Вдоль разграниченных линий вещество может иметь два фазовых состояния (две фазы), находящихся в контексте друг с другом. Имеет место любая из комбинаций: твердое тело - жидкость, твердое тело - пар, жидкость - пар. В точке пересечения линий диаграммы, так называемой тройной точке, могут одновременно существовать все три фазы. Причем это возможно при одной-единственной температуре, поэтому тройная точка служит хорошей точкой отсчета температур. Обычно в качестве точки отсчета выступает тройная точка воды (например, в прецизионных измерениях с использованием термопар, где опорный спай контактирует с системой лед - вода - пар).

Двойная фазовая диаграмма (диаграмма состояния двойной системы) представляет состояние системы с двумя компонентами. На таких диаграммах по оси ординат откладывается температура, по оси абсцисс - процентное соотношение компонент смеси (обычно это или процент от общей массы (вес. %), или процент от общего числа атомов (ат. %)). Давление обычно полагается равным 1 атм. Если рассматривается жидкая и твердая фазы, измерением объема пренебрегают. На рис. 2. представлена типичная двухфазная диаграмма состояний для компонент A и B с использованием весового или атомного процента.


Рис. 2.

Буквой? обозначена фаза вещества A с растворенным веществом B, ? означает фазу вещества B с растворенным в нем веществом A, а? + ? означает смесь этих фаз. Буква (от liquid - жидкий) означает жидкую фазу, а L+?? и L+? означают жидкую фазу плюс фаза или соответственно. Линии, разделяющие фазы, т. е. линии, на которых могут существовать различные фазы вещества, имеют следующие названия: солидус - линия, на которой одновременно существуют фазы? или? с фазами L+? и L+? соответственно; сольвус - линия, на которой одновременно сосуществуют фазы? и? + ? или? и? + ?, и ликвидус - линия, на которой одновременно существует фаза L с фазой L+? или L+?.

Точка пересечения двух линий ликвидуса часто является точкой наименьшей температуры плавления для всех возможных комбинаций веществ A и B и называется эвтектической точкой. Смесь с соотношением компонент в эвтектической точке называется эвтектической смесью (или просто эвтектикой).

Рассмотрим как происходит переход смеси из жидкого состояния (расплава) в твердое и как фазовая диаграмма помогает предсказать равновесную композицию всех фаз, существующих при данной температуре. Обратимся к рис. 3.

Рис. 3.

Предположим, что вначале смесь имела состав C M при температуре T 1 , при температуре от T 1 до T 2 существует жидкая фаза, а при температуре T 2 одновременно существуют фазы L и?. Состав присутствующей фазы L есть C М, состав фазы? есть C ?1 . При дальнейшем снижении температуры до T 3 состав жидкой меняется вдоль кривой ликвидуса, а состав фазы? - вдоль кривой солидуса до пересечения с изотермой (горизонтальной линией) T 3 . Теперь состав фазы L есть C L , а состав фазы есть C ?2 . Следует отметить, что состав C ?2 должен иметь не только вещество, перешедшее в фазу при? при температуре T 3 , но и все вещество, перешедшее в фазу? при более высокой температуре, должно иметь состав C ?2 . Это выравнивание составов должно произойти путем твердотельной диффузии компонента A в существующую фазу?, так что к моменту достижения температуры T 3 все вещество, находящееся в фазе?, будет иметь состав C ?2 . Дальнейшее снижение температуры приводит нас в эвтектическую точку. В ней фазы? и? существуют одновременно с жидкой фазой. При более низких температурах существуют только фазы? и?. Образуется смесь фаз? и? состава C E с агрегатами? с начальным составом C ?3 . Затем, выдерживая эту смесь длительное время при температуре ниже эвтектической, можно получить твердое тело. Образовавшееся твердое тело будет состоять из двух фаз. Состав каждой из фаз можно определить в точке пересечения изотермы с соответствующей линией сольвуса.

Только что было показано, как определить состав каждой из присутствующих фаз. Теперь рассмотрим задачу определения количества вещества в каждой фазе. Во избежания путаницы на рис. 4. еще раз приводится простая двухфазная диаграмма. Предположим, что при температуре T 1 состав расплава есть C M (имеется в виду компонента B), тогда при T 2 фаза L имеет состав C L , а фаза? будет иметь состав C s . Пусть M L - масса вещества, находящегося в твердом состоянии, а M S - масса вещества, находящегося в твердом состоянии. Условие сохранения суммарной массы приводит к следующему уравнению

(M L + M S)C M = M L C L + M S C S .


Рис. 4.

В нем нашел отражение тот факт, что общая масса вещества при температуре T 1 , умноженная на процент B, - есть общая масса вещества B. Она равна сумме масс вещества B, существующего в жидкой и в твердой фазах при температуре T 2 . Решая это уравнение, получаем

Это выражение известно как «правило уровня». С помощью этого правила, зная начальный состав расплава и общую его массу, можно определить массы обеих фаз и количество вещества B в любой фазе для любого участка двухфазной диаграммы. Точно так же можно вычислить и

На рис. 5. приведен еще одни пример отвердения расплава. Снижение температуры от T 1 до T 2 приводит к смешиванию фаз L и? с составом соответственно C M и C ? . По мере дальнейшего охлаждения состав L меняется вдоль ликвидуса, а состав? - вдоль солидуса, как было описано ранее. При достижении температуры T 3 состав? станет равным C М, и, как следует из правила уровня, при температуре, меньшей T 3 , жидкая фаза существовать не может. При температуре, меньшей T 4 , фазы? и? существуют как агрегаты фаз? и?. Например, при температуре T 5 агрегаты фазы? будут иметь состав, определяемый пересечением изотермы T 5 и сольвуса?. Состав? определяется аналогично - пересечением изотермы и сольвуса?.


Рис. 5.

Участки двухфазной диаграммы, называемые до сих пор? и?, - это участки твердой растворимости: в области? растворено A и B. Максимальное количество A, которое может быть растворено в B при данной температуре, находятся в зависимости от температуры. При эвтектической или более высокой температуре может иметь место быстрое сплавливание A и B. Если полученный при этом сплав резко охладить, то атомы A могут быть «пойманы» в решетке B. Но если твердая растворимость при комнатной температуре намного ниже (это говорит о том, что при этой температуре рассматриваемый подход не слишком пригоден), то в сплаве могут возникать сильнейшие напряжения, существенно влияющие на его свойства (при наличии значительных напряжений возникают пересыщенные твердые растворы, и система находится не в равновесном состоянии, а диаграмма дает информацию только о равновесных состояниях). Иногда, такой эффект является желательным, например при упрочнении стали закалкой с получением мартенсита. Но в микроэлектронике его результат будет разрушительным. Поэтому легирование, т. е. внесение добавок в кремний до диффузии, проводится при повышенных температурах с таким расчетом, чтобы предупредить повреждение поверхности из-за избыточного сплавления. Если же количество легирующей примеси в подложке окажется выше предела твердой растворимости при любой температуре, то появляется вторая фаза и связанная с ней деформация.

) — графическое изображение состояний термодинамической системы в пространстве основных параметров состояния - температуры T , давления p и состава x .

Описание

Фазовые диаграммы позволяют узнать, какие фазы (т. е. однородные подсистемы, отличающиеся строением и/или свойствами от других) могут присутствовать в данной системе при данных условиях и составе. Для сложных систем, состоящих из многих фаз и компонентов, построение диаграмм состояния по экспериментальным данным и данным термодинамического моделирования является важнейшим способом предсказания поведения в ходе различных процессов. Анализ относительного расположения полей, разделяющих их поверхностей и линий, а также точек сочленения последних позволяет однозначно и наглядно определять условия фазовых равновесий, появления в системе новых фаз и химических соединений, образования и распада жидких и твердых растворов и т. п.

Диаграммы состояния используют в материаловедении, металлургии, нефтепереработке, химической технологии (в частности, при разработке методов разделения веществ), производствах электронной техники и микроэлектроники и др. С их помощью подбирают условия промышленного синтеза веществ, определяют направленность процессов, связанных с фазовыми переходами, осуществляют выбор режимов термообработки, отыскивают оптимальные составы фаз и т. п.

Фазовые диаграммы однокомпонентных систем изображаются на плоскости в координатах p–T . На них присутствуют поля, отвечающие существованию той или иной фазы вещества (газообразной, жидкой, различных твердых модификаций), разделенные линиями фазового равновесия, вдоль которых возможно сосуществование граничащих фаз. Места, где сходятся три различные линии фазовых равновесий, образуют так называемые тройные точки, в которых могут сосуществовать три фазы. Это максимальное число фаз, способных равновесно сосуществовать в однокомпонентных системах.

Число фаз, присутствующих в данной точке фазовой диаграммы, определяется правилом фаз Гиббса и составляет n + 2 – f , где n - число компонентов, т. е. тех веществ, количество которых в системе может изменяться независимо от остальных, число 2 отвечает давлению и температуре (таким образом, n + 2 есть число параметров, задающих состояние системы, а f - число степеней свободы, т. е. число тех обобщенных сил (давление, температура, химические потенциалы компонентов), которые можно независимо варьировать в некоторых пределах, не меняя при этом равновесного фазового состава.

Например, внутри полей однокомпонентной фазовой диаграммы, где присутствует единственная фаза, можно независимо варьировать давление и температуру, а тройная точка является так называемой точкой нонвариантного равновесия.

Кроме того, на фазовой диаграмме однокомпонентной системы могут изображаться метастабильные фазы, т. е. фазы, не являющиеся равновесными, но способные существовать в определенной области параметров в течение длительного времени вследствие кинетической стабильности, а также критическая точка - точка на линии равновесия жидкость–газ, после которой исчезает скачкообразное различие свойств этих фаз, и понятие фазового перехода теряет смысл.

Помимо температуры и давления могут рассматриваться и другие параметры состояния системы, например, напряженность магнитного поля (H ). Тогда фазовая диаграмма становится многомерной и рассматриваются различные ее сечения, например H–T , а в правиле фаз число 2 меняется на соответствующее число обобщенных сил (полей).

Фазовые диаграммы многокомпонентных систем также являются многомерными. Удобно изучать их плоские сечения, такие, как температура-состав и давлениесостав. Для изобарно-изотермических сечений фазовых диаграмм трехкомпонентных систем, описывающих зависимость фазового состава системы только от ее компонентного состава, используют так называемые треугольники Гиббса.

Обсужденные выше общие положения применимы и к многокомпонентным фазовым диаграммам. Пример широко используемых в материаловедении изобарных (T–x ) сечений двухкомпонентной фазовой диаграммы представлен на рис. Поля таких диаграмм могут отвечать одной или двум сосуществующим фазам, включающим расплав компонентов, твердые фазы чистых компонентов или их соединений промежуточного состава, фазы твердых растворов.

Соотношение фаз в поле, отвечающем двум фазам, определяют по правилу рычага - оно обратно пропорционально соотношению расстояний по горизонтали до ограничивающих поле линий фазовых равновесий, а координаты пересечения горизонтали с этими линиями определяют компонентный состав сосуществующих фаз.

Среди важных элементов T–x сечений двухкомпонентных диаграмм следует упомянуть линию ликвидуса, выше которой наличествует только жидкая фаза; линию солидуса, ниже которой присутствует только твердая фаза, эвтектические точки (точки конгруэнтного плавления), общие для солидуса и ликвидуса (на изломе последнего), и перитектические точки (точки инконгруэнтного плавления, т. е. плавления с частичным разложением твердой фазы) на кривой ликвидуса, в которых могут сосуществовать жидкая фаза и две твердых фазы, а также соответствующие горизонтальные линии эвтектических и перитектических превращений.

Для фаз, состоящих из наноразмерных частиц, может существовать зависимость физических свойств от размера, поэтому фазовую диаграмму иногда заполняют шкалой дисперсности.

Иллюстрации


Авторы

  • Гольдт Илья Валерьевич
  • Иоффе Илья Нафтольевич

Источники

  1. Аносов В. Я., Погодин С. А. Основные начала физико-химического анализа. - М.–Л.: Изд-во АН СССР, 1947. - 876 с.
  2. Химическая энциклопедия. - М.: Советская энциклопедия, 1988.